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In Alzheimer’s disease (AD), a mismatch between neurological damage and cognitive functioning often is
attributed to individual differences in cognitive reserve. Understanding the neural mechanisms of cognitive
reserve, which may differ across individuals, could help to assess the therapeutic effectiveness of interventions in
AD. Here, 38 elderly participants performed a sustained attention task during high-density EEG while alert and
drowsy. We defined cognitive reserve operationally as the ability to maintain task performance under drowsi-
ness, with less impairment indicating higher reserve. Investigating performance variations during the active
management of neural challenges offers a novel approach to studying cognitive reserve, capturing dynamics that
mirror everyday cognitive demand. We relate performance under neural strain to various measures, including
informational complexity using the Lempel-Ziv (LZsum) algorithm. We found a significant interaction between
arousal and performance: LZsum values increased in high performers when drowsy but decreased in low per-
formers. This effect was most pronounced in the frontal and central areas. These findings suggest LZsum reflects a
compensatory mechanism and has potential as a neural marker of cognitive reserve. Additional structural MRI
and network analyses revealed performance-related associations in entorhinal cortex, supramarginal gyrus, and
frontoparietal networks, suggesting broader neural correlates of compensatory capacity.

1. Introduction

Dementia is a neurodegenerative disease that causes a decline in
cognitive function. Patients experience deficits in memory, language
abilities, learning capacity, and executive processing. These impair-
ments result in significant difficulties in performing everyday activities
(Duthey, 2013). Alzheimer’s disease (AD) is the most common form of
dementia and accounts for up to 70 % of dementia cases (WHO, 2019).
Interestingly, there is not always a direct relationship between the level
of cognitive decline and neuropathological severity (Katzman et al.,
1988). This phenomenon may be explained by a compensatory mecha-
nism known as “cognitive reserve” (Stern, 2012). Although cognitive
reserve is most frequently applied to dementia, the concept of cognitive
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reserve aims to explain individual variability in cognitive functioning
and clinical status in the broader context of any neurological or psy-
chiatric strain. In high cognitive reserve dementia patients, advanced
neurodegeneration has been observed in concurrence with relatively
well-preserved cognition (Steffener & Stern, 2012). Recent theoretical
work has questioned whether cognitive reserve is best understood as a
distinct compensatory mechanism or simply as a reflection of our cur-
rent limitations in measuring all relevant aspects of brain structure and
function (Paap, 2024). Specifically, it has been argued that the apparent
mismatch between pathology and cognitive function may reflect un-
known neural mechanisms or structures not detectable by conventional
imaging or assessments. Nevertheless, the term ‘cognitive reserve’ re-
mains widely used to describe these individual differences, while
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acknowledging that ongoing research, such as the present study, aims to
further clarify its neural basis.

In recent years, most AD clinical trials have failed to show significant
differences between drug and placebo groups, a situation that may be
explained by the irreversible neurological damage that may be present
many years before AD symptoms emerge (Cummings et al., 2018).
Disease progression markedly differs between patients with high and
low cognitive reserve. In patients with high cognitive reserve clinical
symptoms often present much later in the disease progression compared
to low cognitive reserve patients, and thus, they can maintain their
cognitive functioning for longer. However, once symptoms appear, their
cognitive decline accelerates and is often more rapid than in patients
with low cognitive reserve (Stern, 2012). The masking effect of high
cognitive reserve on the severity of the condition necessitates more
precise diagnostic methods for these patients. Furthermore, when the
disease is caught at an earlier stage, treatment with currently available
medication may be more successful and prevent further damage. For this
very reason, current research into pharmacotherapy for AD is focused on
the preclinical stage where pathology is present in the absence of neu-
ropsychological symptoms (Huang et al., 2023). In clinical trials, it is
crucial to consider and stratify cognitive reserve, since these trials often
assess differences in the rate of decline in patients to determine drug
treatment effectiveness compared to a placebo. If the level of cognitive
reserve is not accounted for, cognitive reserve could be a strong con-
founding factor in clinical research, which might lead to incorrect con-
clusions about the (in)effectiveness of a given treatment. Therefore, a
direct measure to assess a patient’s level of cognitive reserve would be
beneficial.

Closely related to cognitive reserve is the concept of brain reserve.
Brain reserve refers to structural reserve in the form of higher brain
volume and greater neural density. Individuals with this type of surplus
capacity are better able to cope with the strain of age- or disease related
changes and maintain cognitive functioning for longer (Fratiglioni &
Wang, 2007). In contrast to the passive construct of brain reserve,
cognitive reserve is defined in terms of active adaptability (i.e. flexibility,
capacity, efficiency) of functional brain networks and neural commu-
nication. With high adaptability the brain actively resists the effects of
ageing and pathology, and preserves cognitive functioning (Stern et al.,
2020). Just as individuals differ in their structural reserve of the brain,
there are individual differences in the adaptability of functional brain
processes. Traditionally, cognitive reserve has been associated with
various demographic and lifestyle characteristics (Satz, 1993; Scarmeas
etal., 2001; Valenzuela et al., 2008). Proxies of cognitive reserve such as
occupational complexity, educational level or premorbid IQ have been
shown to moderate the relationship between neural changes and clinical
status but are not direct measures of cognitive reserve. It is not clear
whether and how these factors are fundamental to the construct of
cognitive reserve. As a result of the uncertainty about its precise nature,
cognitive reserve has often been measured as a latent variable (Jones
et al., 2011; Stern et al., 2019).

A way to measure cognitive reserve more directly may be to
temporarily strain the neural system and compare baseline task per-
formance against performance under neural strain. For instance,
inducing drowsiness experimentally could be a suitable approach.
Drowsiness is a reversible and common way of straining the neural
system (Nilsson et al., 2005; Goupil & Bekinschtein, 2012). High levels
of drowsiness are associated with cognitive impairment (Durmer &
Dinges, 2005; Lacaux et al., 2024). The degree to which an individual
experiences cognitive impairment due to drowsiness may reflect indi-
vidual differences in cognitive reserve. Moreover, AD symptoms and
sleep disturbances are highly associated factors. Furthermore, sleep
problems are one of the first emerging symptoms of AD, suggesting that
brain areas related to circadian control and sleep are impacted early in
the disease pathogenesis. Individuals suffering from mild cognitive
impairment, often an early sign of AD, exhibit certain EEG abnormal-
ities, such as a reduction in slow-wave-sleep (SWS) and sleep spindles
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(Ju et al., 2014). Sleep disturbances can lead to excessive daytime
napping, drowsiness, and an increase in cognitive symptoms (Moran
etal., 2005; Ju et al, 2014). The importance of sleep disturbances in AD,
coupled with the notion that the degree of drowsiness-induced cognitive
impairment might reflect variations in cognitive reserve, suggests that
level of arousal could be a useful experimental manipulation in the
context of AD research and cognitive reserve.

Many studies have investigated how cognitive reserve is imple-
mented on a neural level (Stern et al., 2019). As our understanding
advances, the aim is to transition from proxy measures to direct neural
markers that may aid a more accurate assessment of cognitive reserve.
Since cognitive reserve is defined in terms of adaptability (i.e. flexibility,
capacity, efficiency) of brain networks and neural communication (Stern
et al., 2019), high cognitive reserve might be related to generally more
efficient information processing. It remains an open question whether
cognitive reserve reflects a single neural mechanism or a variety of
mechanisms that can differ between individuals. In this study, we focus
on one proposed neural correlate, informational complexity, but
acknowledge that multiple mechanisms may be involved. A novel line of
research involves quantifying informational complexity in the brain and
relating this to different levels of (un)consciousness (Schartner et al.,
2015; Chennu et al., 2014; Casali et al., 2013; Pascovich et al., 2022).
Furthermore, recent research indicates individual differences in per-
formance under neural strain are related to informational complexity
(Boncompte et al.,, 2021). In a study that examined informational
complexity of electroencephalograph (EEG) signals when participants
underwent mild propofol sedation while performing an auditory
discrimination task, high performers were shown to maintain or increase
informational complexity, whereas informational complexity decreased
in low performers. This effect was most pronounced in the frontal re-
gions (Boncompte et al., 2021), which is noteworthy given the
involvement of the frontal regions in attention, executive processes and
cognitive control (Kievit et al., 2014; Stern et al., 2019). Given these
findings, informational complexity could be a promising neural corre-
late for assessing cognitive reserve. A well-established approach to
measuring informational complexity is by using the Lempel-Ziv (LZsum)
algorithm, which assesses the compressibility of a given signal such as
an EEG recording. Higher compressibility of a signal indicates lower
informational complexity and vice versa (Lempel & Ziv, 1976). LZsum
has been used extensively in consciousness studies and has more
recently been applied to research on individual differences in informa-
tional complexity under neural strain in healthy young adult partici-
pants (Boncompte et al., 2021).

The current study aimed to measure cognitive reserve directly and
relate it to a range of neural measures. In this EEG study, 38 elderly
healthy participants who already had undergone structural MRI scans
carried out a sustained attention task under two arousal states: alert and
drowsy. Task performance metrics included mean reaction time, varia-
tion of reaction time, and error-based metrics. Here, cognitive reserve
was putatively operationally defined as the degree to which task per-
formance was impaired under drowsiness compared to alertness,
reflecting the participant’s ability to actively compensate for neural
strain. We hypothesised LZsum values to decrease under drowsiness in
low performers but expected similar or even higher complexity values in
high performers when comparing drowsiness to alertness, especially in
frontal regions, in line with previous research (Boncompte et al., 2021;
Kievit et at., 2014). Additionally, we examined the relationship between
cognitive reserve and both structural volume in cortical and hippo-
campal areas, and network analyses of white matter connectivity. This
approach aims to provide a comprehensive understanding of the po-
tential neural underpinnings of cognitive reserve, so we can draw more
robust conclusions from a variety of neuroimaging metrics. By using
performance under neural strain (i.e. drowsiness) to define cognitive
reserve and using informational complexity measures, this study aims to
fill a critical gap in the literature by introducing a more direct measure
of cognitive reserve, grounded in neurophysiology. Finally,
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incorporating both functional and structural neural markers provides a
comprehensive exploration of cognitive reserve, which could aid in the
development of targeted therapeutic interventions in Alzheimer's dis-
ease and related dementias.

2. Methods
2.1. Participants

38 Elderly participants (16 females, 22 males) with an average age of
73.16 years (SD = 5.26, range 60-84) performed the auditory version of
the sustained attention to response task (SART) (Seli et al., 2012) while
their EEG was recorded. For this study, we recruited participants whose
structural magnetic resonance imaging (MRI) scans (T1-weighted and
diffusion weighted imaging) had already been obtained through
collaborative research projects conducted within two years before the
data collection of the present study (Gellersen et al., 2023). The exper-
imental procedure took place at the EEG lab of the consciousness and
cognition research group of the University of Cambridge. On session
days, participants were asked to refrain from the consumption of any
caffeinated beverages. Participants were paid £10 per hour as reim-
bursement for their time. The experiment lasted approximately 3.5 h in
total including EEG setup, experiment, and cognitive tests. Before the
experiment, participants gave their written informed consent. Ethical
approval was given by the Psychological research Ethics Committee at
the University of Cambridge (CPREC2014.25)

Before the start of the experimental task, the participants were
subjected to a battery of cognitive tests. Fluid intelligence was deter-
mined by participant performance on the Cattell Culture Fair Intelli-
gence Test (scale 2A, Cattell, 1973). Premorbid IQ (i.e. WAIS IQ) was
estimated using the National Adult Reading Test (NART). (Nelson &
Willison, 1991). Additionally, we included participants’ scores from the
Montreal Cognitive Assessment (MoCA), which had been conducted two
years prior during the initial study visit (Gellersen et al., 2023). The
MoCA is a brief 10-minute screening tool to assess cognitive functioning
with a maximum score of 30 points. It is often used by first-line clinicians
in the assessment of patients with mild cognitive complaints. The test
consists of several parts to assess various cognitive domains, including
memory, executive functioning, attention, and language (Nasreddine
et al., 2005). A score of 26 points or above is considered normal, while a
score lower than 26 indicates cognitive impairment, with lower scores
representing worse impairment. In our cohort, 6 participants scored
below 26 points. Furthermore, on average there was a stark difference
between current fluid IQ (Cattell) and NART IQ, with the latter being
considerably higher. Since healthy ageing is a cause of neural strain
(Whalley et al., 2004), the observed difference in our participant group
between estimated premorbid IQ and current levels of cognitive func-
tioning aligns with expectations. The NART provides an estimate of
premorbid (‘peak’) intelligence, which is generally resistant to early
cognitive decline, while the Cattell measures current fluid intelligence,
which is more sensitive to age-related changes and neural strain. By
comparing these two scores, we can better distinguish between lifelong
cognitive ability and any decline that may have occurred, thus capturing
both stable and dynamic aspects of cognition relevant to cognitive
reserve. See Table 1 for a detailed summary of participant

Table 1

Participant Characteristics.
N =38 (9=16, 3 = 22) Mean (SD) Median Range
Age 73.16 (5.26) 73.5 60 - 84
Years of Education 18.01 (4.68) 18 10-39
MoCA score 27 (1.76) 27 23 -30
NART IQ 120.63 (6.02) 121 105 -129
Cattell IQ 97.18 (10.49) 96 79 -122
NART - Cattell 23.48 (11.74) 25.5 —10-42

Brain and Cognition 193 (2026) 106392

characteristics.
2.2. Experimental procedure

In the auditory version of the SART, participants were instructed to
respond to certain auditory stimuli and inhibit responses in reaction to
others (Seli et al., 2012). As part of the experimental setup, levels of
arousal were manipulated in the following way. Before the task, par-
ticipants were seated in a reclining chair in a darkened room and pro-
vided with blankets and pillows to ensure their comfort. The participants
were given the following instructions: a) to close their eyes and keep
them closed throughout the task, b) to minimise any movements, c) to
continue the task even if they made mistakes, and, d) not to worry if they
felt drowsy during the task. However, if a participant fell asleep, as
indicated by three consecutive non-responsive trials, an audio recording
was played to wake them up. If the recording failed to wake the
participant, the experimenter manually woke them up. The purpose of
this setup was to induce drowsiness. The expectation was that partici-
pants would be relatively alert at the start of the task, but increasingly
drowsy as the experiment progressed, aiding the comparison of perfor-
mance in alert and drowsy states.

Prior to the onset of the SART, participants completed a resting state
block (5 min). The SART involved the randomised auditory presentation
of numbers between 0 and 9, extracted from a vocal recording database
(Sayanng, 2009). Participants were instructed to respond to each num-
ber by pressing a button, except for the number '3, the target stimulus, to
which they had to withhold a response. Stimulus randomisation was
modulated by two parameters: first, the target stimulus was not pre-
sented more than three times consecutively; second, the target stimulus
was only presented in 10 % of trials. Participants initially performed a
practice block consisting of 30 trials (2.5 min), with a fixed response
window of 1100 ms. For the main task, the duration of the response
window was determined by the mean reaction time of the participants
during the practice block (i.e. mean RT + 250 ms). The end of the
response window was signalled by a 'beep' sound (SoundJay, 2009),
followed by an inter-trial interval lasting between 2 and 5 s. The task
consisted of 700 trials in total and was divided into two blocks of 350
trials each, with a 3-minute break in between. See Fig. 1 for an overview
of the trial structure.

2.3. EEG details

2.3.1. EEG acquisition details

A Philips EGI EEG system with 129 channels (Electrical Geodesics,
Inc.) was used to collect EEG data. The recordings were obtained with
Netstation software running on a Mac computer and sampled at a fre-
quency of 1000 Hz.

2.3.2. EEG preprocessing

Down-sampling of the data to 250 Hz was done using Netstation
Tools software (EGI, Electrical Geodesics, Inc.) after which the data was
imported to EEGLAB (Delorme and Makeig, 2004) for MATLAB format
(version 2019a, MathWorks, Inc) using the mffmatlabio plugin (Delorme
et al., 2019). The Automagic system (Pedroni, Bahreini, and Langer,
2019) was used to standardise the pre-processing pipeline. First, the
PREP algorithm (Bigdely-Shamlo et al., 2015) was used to detect and
remove noisy channels. The remaining channels were then filtered using
a high-pass cut-off of 1.0 Hz and a low-pass cut-off of 35 Hz. Next, an
independent components analysis was performed on the data. Artefac-
tual components were automatically rejected using the open-source
EEGLAB plug-in MARA (Winkler et al., 2014). Removed channels
(mean = 11.42, SD = 7.25) were then spherically interpolated. The data
was pre-trial epoched into periods of four seconds preceding each
stimulus onset, and noisy epochs were automatically rejected (mean = 6,
SD = 4.31) based on threshold values of + 150 uV or slopes of more than
60 pV using the manage badTrials plugin for EEGLAB (Jagannathan
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Fig. 1. Single-trial structure of the auditory version of the Sustained Attention to Response Task (SART). At the start of each trial, a recording was played of a
number between 0 and 9 (e.g. 4). The participant had to press a button after hearing the number, except when hearing the number 3 (i.e. target stimulus) when a
response should be withheld. The length of the response window was determined for each participant by their average response time during the practice run plus 250
ms. The end of the response window was indicated with a beep followed by a random inter-trial interval of 2 to 5 s.

et al., 2018).

2.3.3. Drowsiness classification

To determine the level of arousal for each 4-second epoch, a machine
learning algorithm was used that had previously been validated for
classifying levels of arousal (Jagannathan et al., 2018). The algorithm
was trained using microstate variations in alertness and drowsiness
derived from the EEG signal of eyes-closed experiments. Specifically, the
algorithm is based on the Hori-scale, which divides the sleep onset
process into nine stages ranging from wakefulness (stages 1-2) to the
onset of N2 sleep (stage 9) (Iber et al., 2007). The algorithm computes
predictor frequency variance and cross-frequency coherence features,
which are then used to differentiate between alertness and drowsiness.
Alertness is determined by the presence of Alpha wave trains (> 50 %)
(Hori: 1 — 2), whereas the transition from alertness to drowsiness is
typically characterised by a reduction in Alpha activity (Hori: 3 = Alpha
< 50 %) and an increase in Theta waves (Hori: 5). The EEG data is then
further analysed to detect graphoelements (i.e. vertex, spindles, and K-
complexes) which are used to classify the level of drowsiness as either
'mild' when no graphoelements are present or 'severe' in case graph-
oelements do occur (Jagannathan et al., 2018). In the present study,
trials classified as severely drowsy were merged with those classified as
mildly drowsy due to the lack of severely drowsy trials in most partici-
pants. The resulting levels of arousal were categorised as 'alert' and
'drowsy' for analysis of within- and between-participant effects.

2.3.4. Lempel-Ziv (LZ) complexity algorithm

The LZ algorithm computes complexity by determining the number
of non-redundant patterns in the given data and is therefore inherently a
measure of signal diversity (Lempel & Ziv, 1976). LZ is a widely
recognized measure of informational complexity and has previously
been applied to the EEG signal (Casali et al., 2013; Schartner et al.,
2015). In our study, we applied the LZ algorithm in its single-channel
form, known as LZsum, which focuses on capturing the temporal di-
versity within individual EEG channels. To compute LZsum, EEG data
was first transformed into a binary sequence based on a threshold
derived from the instantaneous amplitude of the Hilbert transform,
following the approach used by Schartner et al. (2015). This binary
representation assesses signal complexity by identifying unique patterns
within the sequence. The LZsum value, ranging from 0 (indicating no
diversity) to 1 (indicating maximum diversity), provides an insight into
the complexity of the EEG signal, where higher values denote a less
compressible, more diverse signal. See Schartner et al. (2015) for a
detailed explanation of the LZ algorithm and its application to EEG data.

2.4. MRI Details

2.4.1. MRI image acquisition

Structural MRI and Diffusion Weighted Images (DWI) were acquired
at the MRC Cognition and Brain Sciences Unit of the University of
Cambridge. Here, whole-brain T1-weighted (1x1x1 mm) MRI image
acquisition was performed using a 3-Tesla Trio Siemens scanner (32-
channel coil). As previously described in Gellersen et al. (2023, [p. 921),
the following acquisition parameters were used: “a whole-brain T1-
weighted (1 x 1 x 1 mm) magnetization-prepared rapid gradient-echo
(MPRAGE) sequence with a repetition time (TR) of 2300 ms, an echo
time (TE) of 2.96 ms, a field of view (FOV) of 256 mm, flip angle of 9°,
and 176 sagittal slices.” The acquisition was done in an interleaved,
bottom-up order. Diffusion Weighted Imaging (DWI) was performed
using isotropic voxel resolution (2x2x2mm3) and an interleaved slice
acquisition method to minimise cross-talk artefacts between slices. The
following acquisition parameters were used: a total acquisition time of
10 min and 14 sec, a repetition time (TR) of 8500 ms, an echo time (TE)
of 90 ms, a field of view (FOV) of 192 mm x 192 mm, with a matrix size
of 96 x 96, resulting in a resolution of 2 mm x 2 mm. Imaging was
conducted in 2D with a total of 68 slices, each 2 mm thick, and without
any slice gap. The sequence included 64 diffusion directions with two
diffusion weightings, characterized by b-values of 0 s/mm? and 1000 s/
mm?. Parallel imaging was employed using the GRAPPA technique, with
an acceleration factor in the phase-encode (PE) direction of 2 and 40
reference lines in the PE (Gellersen et al., 2023).

2.4.2. Structural MRI preprocessing

In our study, structural MRI data underwent processing and parcel-
lation to analyse cortical volumes and hippocampal subfields. We used
FreeSurfer software for the segmentation of T1-weighted scans,
obtaining total intracranial volume (TIV) and volumetric measures of
cortical regions. The cortical regions were parcellated according to the
Desikan-Killiany atlas (Desikan et al., 2006; Fischl and Dale, 2000). For
more information on the cortical parcellation process, readers are
referred to the FreeSurfer wiki page on Cortical Parcellation [https://sur
fer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation]. Manual seg-
mentations of the T2 images were previously obtained by two inde-
pendent raters (authors HMG and BFG in Gellersen et al., 2023) to
delineate MTL sub-regions using the ITK-Snap software (Version 3.6.0;
https://www.itksnap.org) (Yushkevich et al., 2006) and following a
protocol developed by Carr and colleagues (2017). This method allowed
a precise delineation of the perirhinal cortex (PRC), entorhinal cortex
(ERC), parahippocampal cortex (PHC), and the hippocampal subfields
comprising the subiculum, CA1l, a combined CA2-4/dentate gyrus re-
gion, and the hippocampal tail. For more details see Gellersen et al.
(2023).
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2.4.3. Diffusion image preprocessing

For the DWI preprocessing, we used the same approach described in
Luppi et al. (2021). Here, MRtrix3 tools were used to preprocess the
diffusion-weighted images (Tournier et al., 2019). First, we manually
removed the diffusion-weighted volumes that showed a considerable
degree of distortion. After completion of this step, the pipeline consisted
of the following steps: (1) Using the dwidenoise command, diffusion data
were denoised with a technique that utilises DWI data redundancy in the
PCA domain (Veraart et al., 2016), (2) The images were corrected for
eddy current distortion and motion by registration of all diffusion im-
ages to b0 with the use of FSL’s eddy tool through the dwipreproc com-
mand of MRtrix3, (3) The diffusion gradient vectors were rotated to
correct participant motion as estimated by the eddy tool, (4) Using the
dwibiascorrect command, DWI volumes were corrected for bl field in-
homogeneity, (5) We used a combination of FSL BET commands and
MRtrix3 dwiZmask to create a brain mask.

We used DSI Studio (https://www.dsistudio.labsolver.org) to
reconstruct the diffusion tensor imaging (DTI) data from the pre-
processed diffusion data. Specifically, we applied g-space diffeomorphic
reconstruction (QSDR) (Yeh et al., 2011) which is a previously-validated
technique to reconstruct structural networks. This model-free technique
maintains the fiber geometry continuity for fiber tracking and conserves
the diffusible spins by computing the orientational distribution of water
diffusion density in standard space. The first step consists of the recon-
struction of DWIs in native space and quantitative anisotropy (QA)
calculation per voxel. Using the acquired QA values, the brains are then
warped in Montreal Neurological Institute (MNI) space to a template QA
volume with the nonlinear registration algorithm of the statistical
parametric mapping (SPM) application. After converting the images to
MNI space, the final step of the QSDR consists of reconstructing spin
density functions (SDFs) using the following parameters: mean diffusion
distance = 1.25 mm, 3 fiber orientations for each voxel (Yeh et al.,
2011).

To identify the connectivity between brain areas, we employed
deterministic fiber tracking using a “FACT” algorithm with 1,000,000
streamlines. For this aim, we used the following previously-validated
parameters (Luppi & Stamatakis, 2021; Medaglia et al., 2016) as pre-
viously described in (Luppi & Stamatakis, 2021, [p.99]) and (Luppi
et al., 2021, [p. 35, biorxiv]): “angular cutoff = 550, step size = 1.0 mm,
tract length between 10 mm (minimum) and 400 mm (maximum), no
spin density function smoothing, and QA threshold determined by DWI
signal in the cerebrospinal fluid.” To generate a white matter mask, a
standard threshold of 0.6 Otsu is automatically employed by DSI Studio
to threshold the spin density function’s anisotropy values. The mask is
then used to automatically check every streamline, to exclude stream-
lines with incorrect termination locations (Luppi & Stamatakis, 2021;
Medaglia et al., 2016).

2.4.4. Parcellation & network modules

We used a parcellation method, developed by Schaefer et al. (2018),
to divide the structural MRI brains into 100 cortical regions of interest (i.
e. network nodes). Next, all network nodes were allocated to one of the
seven subnetworks as previously defined by Yeo et al. (2011). The
different subnetworks were numbered in the following way: 1. Visual
areas (VIS), 2. Somatomotor system (SOM), 3. Dorsal Attention Network
(DOR), 4. Ventral Attention Network (VEN), 5. Limbic regions (LIM), 6.
Frontoparietal Control Network (FPC), and 7. Default Mode Network
(DMN).

2.5. Statistical analysis

2.5.1. Behavioural performance and exclusion

All statistical analyses were executed in MATLAB (R202la -
R2025a); visualisations were produced in MATLAB or R (ggplot2 3.5).
Raincloud plots were produced using the Raincloud plots package (Allen
et al., 2021). To determine performance on the SART, we analysed the
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mean reaction times (RT), the coefficient of variation of reaction time
(CV RT), and the proportion of commission errors and omission errors of
each participant. The CV RT determined RT variability and was
computed as the standard deviation divided by the mean. The propor-
tion of commission errors was defined as the sum of all target trials with
a response (i.e. errors due to responding when the participants should
not have) divided by the sum of all target trials. Proportion of omission
errors was defined as the sum of all non-target trials without a response
(i.e. errors due to not responding when the participants should have) or
a response made after the end of the response window, divided by the
sum of all non-target trials. The following exclusion criteria were used:
(1) Target trials were excluded from further analysis when they imme-
diately followed three succeeding non-target trials where no response
was given, to ensure that seemingly correct response omissions on target
trials were not due to the participant being asleep, (2) Participants were
excluded from all analyses involving reaction time data when they had
fewer than 50 alert or drowsy trials, (3) Participants were excluded from
all analyses involving commission error data when they had fewer than
10 alert or drowsy target trials. Additionally, we assessed the presence of
trains of omission errors, defined as sequences of at least three consec-
utive omission errors, indicative of the participant being asleep rather
than genuinely failing to respond. This analysis aimed to distinguish
between true omission errors and those resulting from sleep. Two par-
ticipants exhibited a significantly higher incidence of trains of omission
errors, indicating either sleep or other forms of non-compliance, and
thus were additionally excluded from analyses concerning omission
errors. As a result, 34 participants were included in analyses concerning
measures of RT (mean RT and CV RT), 32 participants were included in
omission error-related analyses, and 28 participants were included in
commission error-related analyses.

2.5.2. Ranking

To evaluate how well the participants were able to maintain their
performance level under the neural strain of drowsiness, we calculated
the difference between alert and drowsy states for each of the four-
performance metrics: mean RT (drowsy/alert ratio), CV RT (drowsy/
alert ratio), commission (drowsy minus alert) and omission errors
(drowsy minus alert). Generally, participants performed worse while
drowsy, although there were some exceptions in which the score slightly
improved while drowsy. Participants were ranked based on the perfor-
mance difference between alertness and drowsiness, ranging from par-
ticipants exhibiting little performance decline or even performance
improvement (high performers), to those who experienced the greatest
decline in performance between drowsiness and alertness (low per-
formers). For the purpose of the ANOVA analyses, we divided the par-
ticipants into two groups using median split, where the bottom half were
classified as low performers, and the top half as high performers.

2.5.3. LZsum and regions of interest

To evaluate the complexity level of each participant for both levels of
arousal, LZsum values were averaged across trials and electrodes for
both alertness and drowsiness. Next, we performed two-way mixed
factor ANOVAs to analyse the interaction between level of arousal
(alert/drowsy) as the within-subject factor, performance (high/low) as
the between-subject factor, and LZsum as the dependent variable. To
further investigate the potential interaction between level of arousal and
performance, we conducted the above-described analysis again, but now
with one extra factor: regions of interest (ROIs). Using the same
approach as described in Folland et al. (2015), we divided 90 of the 129
electrodes into five areas (frontal, central, temporal, parietal, and oc-
cipital) for both the left and right hemispheres, which resulted in 10
ROIs in total. Each ROI consisted of approximately 16 to 20 electrodes,
then averaged to represent the EEG activity from that brain area.
Midline electrodes were excluded to aid an accurate comparison of the
left and right hemispheres. Also, the outermost electrodes were excluded
to avoid interference from facial muscle artefacts. Next, LZsum was
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computed for each ROI, and per condition (alert/drowsy). Finally, we
performed three-way mixed factor ANOVAs to analyse the interaction
between level of arousal (alert/drowsy) and ROI as the within-subject
factors, performance (high/low) as the between-subject factor, and
LZsum as the dependent variable.

2.5.4. Statistics

For each of the four performance metrics (i.e. mean RT, CV RT,
commission errors, omission errors), we performed a two-way mixed
factor ANOVA with a within-subject factor Arousal (alert, drowsy) and a
between-subject factor Performance (high, low), and outcome variable
LZsum. To explore regional effects, we repeated the whole-brain anal-
ysis with region of interest (ROI) as an additional within-subject factor,
yielding a three-way mixed factor ANOVA. For the effect sizes, we report
partial n2 for ANOVAs, and Cohen’s d for t-tests.

Normality and homogeneity of variance were checked before each
mixed-factor ANOVA. To test for normality, the Shapiro-Wilk test was
applied to the model residuals (o = 0.05). To test for homogeneity,
Levene’s test applied separately to the Alert and Drowsy conditions. For
the two-way mixed factor ANOVA, all metrics met both assumptions,
therefore the standard ANOVA results are reported throughout.

For the three-way mixed factor ANOVA, Levene’s test was applied to
each ROI (alert and drowsy separately) for all four behavioural metrics.
Using a Bonferroni-adjusted a = 0.0125 within ROI (0.05/4 tests), none
of the variance tests reached significance, indicating that the homoge-
neity assumption was satisfied (Maxwell, Delaney, & Kelley, 2017). We
therefore conclude that the equal-variance assumption is satisfied and
interpret the ANOVA results without further correction. Residual
normality was assessed with the Shapiro-Wilk test. Only mean RT met
the assumption [g; = -0.01, gz = -0.16]. CV RT, omission errors and
commission errors showed mild violations, but skewness and excess
kurtosis [CV RT: g; = 0.08, g = -0.32; Commission Errors:: g = 0.35, &2
= -0.23; Omission Errors: g = -0.07, g» = -0.25) were close to Gaussian
and group sizes were balanced. Mixed-factor ANOVA is robust to mod-
erate deviations from normality when group sizes are balanced and
variances are homogeneous (Maxwell et al., 2017; Blanca et al., 2017).
Therefore, the standard ANOVA without further correction was
reported.

Mean RT

LZSUM (Whole brain)

0.525

Alert Drowsy
Condition
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3. Results
3.1. Group comparisons

First, we examined performance from a group-level perspective.
Participants were categorised into high and low performers to investi-
gate the relationship between group-level performance, LZsum (both
whole brain and ROI-based), and levels of arousal (drowsy vs. alert).

3.1.1. LZsum in high and low performers across arousal states

We performed a two-way mixed factors ANOVA for each of the 4
performance metrics (mean RT, omission errors, commission errors, and
CV RT) to examine the interaction between arousal level (drowsy, alert)
and performance (high, low) with LZsum as the outcome variable. This
analysis aimed to investigate differences in informational complexity
between high and low performers during different states of arousal. In
this way, we aimed to study LZsum as a potential neural marker for the
underlying compensatory mechanism that allows high performers to
maintain their performance level while under neural strain. Our results
show a significant interaction effect (performance x arousal) for mean
RT [F(1,32) = 5.97, p = 0.020, 11p2 = 0.16], depicted in Fig. 2a, and
omission errors [F(1,30) = 10.16, p = 0.003, 11p2 = 0.25], shown in
Fig. 2b. However, no significant interaction effect was found for com-
mission errors [F(1,26) = 0.81,p = 0.376, np2 =0.03] or CVRT [F(1,32)
=0.29, p = 0.592, jp? = 0.01]. Further post-hoc t-tests showed that high
performers exhibited a significant increase in LZsum when drowsy
compared to an alert state. This was the case for both mean RT [t(16) =
-4.08,p < 0.001, Cohen's d = — 1.02] and omission errors [t(15) =-4.91,
p < 0.001, Cohen's d = -1.27]. Conversely, no significant differences
were found between drowsy and alert states for low performers in terms
of mean RT [t(16) = -0.68, p = 0.506, Cohen's d = -0.05] and omission
errors [t(15) =-0.18,p = 0.861, Cohen's d = -0.05]. We also conducted t-
tests to assess the LZsum differences between high and low performers in
each arousal state. These showed that compared to low performers, high
performers exhibit significantly higher LZsum values in the alert state
for mean RT [t(32) = 3,28, p = 0.003, Cohen's d = 1.16], but not
omission errors [t(30) = 1.73, p = 0.09, Cohen's d = 0.63]. In drowsy
states high performers had significantly higher LZsum values for both
mean RT [t(32) = 4.49, p < 0.001, Cohen's d = 1.59] and omission errors
[t(30) = 3.01, p = 0.005, Cohen's d = 1.10]. These results show that the
differences between the high performing and low performing group
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Fig. 2. LZsum in alert and drowsy states: comparing high to low performers. A. This panel displays a rain cloud plot showing the variations of LZsum values
derived from whole-brain EEG signals across alert and drowsy conditions. Participants are divided into two groups based on their mean reaction times (RT) when
performing the auditory version of the Sustained Attention to Response Task (SART). High performers are represented in red and low performers in blue. B. Similar to
panel A, but here, participants are categorised into high and low performers based on the number of omission errors when performing the SART. (p < 0.05 ), (p <
0.01%%), (p < 0.001***). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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became more apparent in the drowsy state. Furthermore, LZsum
appeared to be higher overall in high performers compared to low
performers for both mean RT [t(66) = 5.49, p < 0.001, Cohen's d = 1.35]
and omission errors [t(62) = 3.35, p = 0.001, Cohen's d = 0.85]. The
observed significant increase in LZsum for high performers while
drowsy contrasted with the absence of this effect in low performers,
suggests an underlying compensatory mechanism that enabled high
performers to maintain their performance levels despite the neural
strain of by drowsiness. Additionally, we performed the two-way mixed-
factor ANOVAs with education, IQ (Cattell and NART, and NART —
Cattell), MoCA and age entered individually as covariates. The signifi-
cant interaction effect between arousal and performance (mean RT,
omission errors) persisted in all cases, indicating that these covariates
did not account for the observed effects.

3.1.2. Region of interest analysis of LZsum in high and low performers
across arousal states

We conducted three-way ANOVA analyses to examine the interac-
tion between performance, level of arousal, and region of interest (ROI)
with LZsum as the outcome variable. In this way, we aimed to investi-
gate which ROIs are most involved in the effect that showed LZsum
differences when comparing high performers and low performers across
different levels of arousal. Notable variations were observed across
different performance metrics. For CV RT, there was a highly significant
three-way interaction effect [F(9, 288) = 3.23, p < 0.001, np2 =0.09], as
well as a significant two-way interaction between performance and ROI
[F(9,288) = 2.62, p = 0.006, np2 = 0.08]. However, no significant
interaction was found between performance and arousal [F(1,32) =
0.13, p = 0.723, 5p? < 0.01], and the main effect of performance was
also not significant [F(1,32) = 0.53,p = 0.471, an = 0.02]. In the case of
mean RT, no significant three-way interaction was found [F(9, 288) =
1.21, p = 0.291, p? = 0.04], and the two-way interaction between
performance and ROI [F(9, 288) = 1.67, p = 0.096, npz = 0.05] was also
not significant. The interaction between performance and arousal was
significant with F (1,32) = 5.36, p = 0.027, np® = 0.14], alongside a
significant main effect of performance [F(1,32) = 10.17, p = 0.003, 5p®
= 0.24]. For omission errors, the three-way interaction was not signif-
icant [F(9, 270) = 0.18, p = 0.996, npz = 0.01], and no significant effect
was found for performance * ROI [F(9, 270) = 0.64, p = 0.762, jp” =
0.02]. Performance * arousal shows a significant effect [F(1, 30) = 9.85,
p = 0.003, np? = 0.25), and the main effect of performance showed a
trend [F(1, 30) = 3.37,p = 0.08, npz = 0.10]. For commission errors, the
three-way interaction was significant [F(9, 234) = 1.40, p = 0.191, 5p?
= 0.05], whereas no significant two-way interactions or main effects
were observed for performance * ROI [F(9, 234) = 1.36, p = 0.210, p°
= 0.05], performance * arousal [F(1, 26) = 0.35, p = 0.561, ;1p2 =0.01],
or the main effect of performance [F(1, 26) = 0.31, p = 0.583, np” =
0.01].

For each region of interest, we conducted four follow-up two-way
ANOVAs (Performance x Arousal) corresponding to the four behav-
ioural metrics (mean RT, omission errors, commission errors, RT CV).
Family-wise error was controlled with a Bonferroni correction applied
within ROL For mean RT the performance x arousal interaction was
significant in the frontal left (FL) region [F (1, 32) = 12.45, p = 0.004,
qu = 0.28], as was the interaction in the frontal right (FR) region [F(1,
32) = 10.71, p = 0.012, yp? = 0.25]. Furthermore, significant effects
were found for the performance x arousal interaction in the central left
(CL) region [F (1, 32) = 9.60, p = 0.016, npz = 0.23], the central right
(CR) region [F (1, 32) = 8.15, p = 0.032, ;1p2 = 0.20], and the temporal
right (TR) region [F (1, 32) = 10.84, p = 0.008, npz = 0.25]. Similarly,
for omission errors, significant interactions were observed in both the FL
[F(1,30) = 12.71, p = 0.004, sp® = 0.30] and FR [F(1, 30) = 10.71,p =
0.012, npz = 0.26], as well as in the central left (CL) region [F(1, 30) =
17.12, p = 0.001, npz = 0.36], the central right (CR) region [F(1, 30) =
11.74, p = 0.008, ryp2 = 0.28], and the temporal right (TR) region [F(1,
30) =11.87, p = 0.008, 5jp? = 0.28]. No significant results were observed
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for CV RT or commission errors. See Fig. 3 for an overview of these
region-specific effects.

Further analyses using post-hoc t-tests on these significant in-
teractions indicated that in the FL region, high performers showed a
significant increase in LZsum values when drowsy for mean reaction
time [t(16) =-2.11, p = 0.050, Cohen's d = -0.53] and omission errors [t
(15) = -2.41, p = 0.029, Cohen's d = -0.62], whereas low performers
exhibited significant LZsum decreases [mean RT: t(16) = 2.83, p =
0.012, Cohen's d = 0.71; omission errors: t(15) = 2.68, p = 0.017,
Cohen's d = 0.69]. A similar pattern was observed in the FR region, a
trend was found for high performers experiencing an increase in LZsum
values when drowsy for mean RT [t(16) = -1.89, p = 0.077, Cohen's d =
-0.47] and a significant increase in case of omission errors: t(15) = -2.45,
p = 0.027, Cohen's d = -0.63] and low performers showing a significant
decrease of LZsum values [mean RT [t(16) = 2.67, p = 0.017, Cohen's d
= 0.69; omission errors [t(15) = 2.33, p = 0.035, Cohen's d = 0.60]. In
the CL region, high performers also displayed a significant increase in
LZsum values when drowsy compared to alert for mean RT [t(16) =
-3.49, p = 0.003, Cohen's d = -0.87] and omission errors [t(15) = -4.89,
p < 0.001, Cohen's d = -1.26]. However, low performers did not show a
significant decrease of LZsum values in this case [mean RT: t(16) = 1.48,
p = 0.158, Cohen's d = 0.37; omission errors: t(15) = 2.05, p = 0.059,
Cohen's d = 0.53]. In the CR region, high performers also displayed a
significant increase in LZsum values when drowsy compared to alert for
mean RT [t(16) = -3.21, p = 0.006, Cohen's d = -0.80] and omission
errors [t(15) = -4.87, p < 0.001, Cohen's d = -1.26]. However, for low
performers no significant increase of LZsum was observed during
drowsiness [mean RT: t(16) = 1.38, p = 0.185, Cohen's d = 0.35;
omission errors: t(15) = 1.58, p = 0.136, Cohen's d = 0.41]. Finally in
the TR, high performers displayed a significant increase in LZsum values
when drowsy compared to alert for mean RT [t(16) = -2.80, p = 0.013,
Cohen's d = -0.70] and omission errors [t(15) = -3.24, p = 0.006,
Cohen's d = -0.84]. However, for low performers no significant increase
of LZsum was observed during drowsiness [mean RT: ¢(16) =-0.61,p =
0.553, Cohen's d = -0.15; omission errors: t(15) = -0.22, p = 0.828,
Cohen's d = -0.06].

These results suggest a region-dependent difference in the modu-
lating effect of arousal states on LZsum when comparing high per-
formers to low performers, particularly concerning the performance in
terms of mean RT and omission errors. The effect is most pronounced in
key regions associated with attentional and executive processes (frontal
regions) (Kievit et al., 2014) and areas involved in sensorimotor func-
tions (central regions) (Kandel et al., 2013). This pattern suggests a
similar compensatory mechanism as was also observed in the whole-
brain LZsum results supported by a region-specific modulation of
brain complexity. It must be mentioned that since EEG has limited
spatial precision (Nunez & Srinivasan, 2006), effects found in specific
regions may originate from neighbouring areas. However, the signifi-
cant effect found in the frontal and central regions, and the absence of an
effect in other regions (e.g. the occipital electrodes), suggests mean-
ingful region-dependent activity.

3.2. Correlational analysis of task performance with brain measures and
cognitive reserve proxies

We further explored the relationship between task performance and
key variables (as detailed below) with a correlational analysis. We
calculated correlations between the four metrics (mean RT, CV RT,
commission errors, and omission errors) of task performance difference
(drowsy/alert ratio) and: 1) LZsum difference (drowsy/alert ratio) in
each of the 10 ROIs, 2) graph theoretical measures of white matter
connectivity, 3) grey matter volume in cortical and hippocampal areas,
and 4) proxies of cognitive reserve. For the correlational analyses,
multiple comparisons were controlled using a Bonferroni correction
applied across the four task performance metrics (mean RT, CV RT,
commission errors, omission errors) within each family of variables (e.
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Fig. 3. LZsum ROI-based EEG analysis (LZsum) in alert and drowsy states: comparing high to low performers. A-J show LZ complexity differences (alert vs.
drowsy) at frontal (left/right), central (left/right), and temporal (right) regions of interest for either mean reaction time (A, C, E, G, I) or omission error rate (B, D, F,
H, J), illustrating how neural signal complexity relates to task performance across regions, arousal and metrics. Only the significant results after Bonferroni correction
are included in the panels. The x-axis represents the two conditions (alert vs. drowsy), and the y-axis represents the LZsum values. Participants are divided into two
groups based on their performance on the auditory version of the Sustained Attention to Response Task (SART). High performers are represented in red and low
performers in blue. (p < 0.05 *), (p < 0.01%%), (p < 0.001***). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

g., each ROI, each graph theoretical measure, each grey matter volume measure).
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Fig. 4. Scatterplots of associations between LZsum and performance difference (drowsy vs alert) on various performance metrics. All panels display
scatterplots which illustrate the significant relationship between LZsum difference (drowsy/alert) of specific regions of interest (ROI) (y-axis) and various cognitive
performance difference (drowsy/alert) metrics (x-axis). All of the significant results displayed in the scatterplots survived Bonferroni correction. A. Association
between frontal left LZsum and mean RT difference. B. Association between frontal right LZsum and mean RT difference. C. Association between central left LZsum
and mean RT difference. D Association between central left LZsum and commission errors difference. E. Association between central right LZsum and commission
errors difference. F. Association between frontal left LZsum and omission errors difference. G. Association between frontal right LZsum and omission errors dif-
ference. H. Association between central left LZsum and omission errors difference. (p < 0.05 *), (p < 0.01**), (p < 0.001***).
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3.2.1. Correlational analysis of LZsum and task performance

Building on our earlier findings that showed a strong effect for per-
formance on LZsum differentiating between high and low performers,
we now perform the corresponding individual differences analysis.
Significant negative correlations, which remained statistically signifi-
cant after Bonferroni correction, were found between performance dif-
ference and LZsum difference in the frontal and central areas for mean
RT difference (drowsy/alert) and both omission and commission error
difference (drowsy — alert). See Fig. 4 for an overview. These results
support our previous ANOVA findings by demonstrating a consistent
pattern where LZsum negatively correlates with task performance dif-
ference (alert vs. drowsy). Here, a higher LZsum ratio (drowsy/alert) is
associated with a better ability to maintain task performance under
drowsiness, as indicated by lower scores in performance difference, and
vice versa. This negative correlation is most robust in frontal and central
brain areas, indicating that increased LZsum in these areas during
drowsiness is linked to more resilient cognitive functioning under neural
strain. For a detailed overview of all significant correlations, including
those that did not survive correction, between performance difference
and LZsum difference in the ROIs, please refer to Table S3 in the sup-
plementary materials.

3.2.2. Correlational analysis of structural brain measures, cognitive reserve
proxies, and task performance

We computed network measures of white matter connectivity for
both the overall brain network and seven distinct subnetworks as
defined by Yeo et al. (2011), using the Brain Connectivity Toolbox
(Rubinov & Sporns, 2010), to investigate the following network char-
acteristics: characteristic path length, average degree, global efficiency,
mean clustering coefficient, mean participation coefficient, small-
worldness, and core-periphery structure. Additionally, our analysis
included structural volumetric MRI data of cortical and medial temporal
lobe (MTL) regions, and proxies of cognitive reserve, namely two
distinct IQ measures: 1. Cattell for fluid intelligence (Cattell, 1973) and
2. NART for premorbid intelligence (Nelson & Willison, 1991) along
with the discrepancy between them (NART - Cattell), the scores on the
Montreal Cognitive Assessment (MoCA) (Nasreddine, 2005), and
educational level.

We calculated correlations between the four metrics of behavioural
performance difference between drowsy and alert (mean RT, CV RT,
commission errors, and omission errors) and: 1) network measures of
white matter connectivity, 2) grey matter volume in cortical areas and
the MTL, and 3) proxies of cognitive reserve. No significant correlations
were found between our behavioural measure of cognitive reserve and
any of the traditional proxies (age, education, fluid intelligence, pre-
morbid IQ, IQ difference, or MoCA score).

Of note, two correlations between performance difference (drowsy
vs alert) and network connectivity measures survived correction for
multiple comparisons: (1) a negative association between omission er-
rors difference and the mean participation coefficient of the frontopar-
ietal control network, and (2) a positive association between mean
reaction time difference and core-periphery structure in the ventral
attention network. These findings suggest that specific aspects of brain
network organisation, particularly within networks related to cognitive
control and attentional processes, are linked to the capacity to maintain
performance under neural strain. Other noteworthy significant corre-
lations also concerned cognitive control and attentional networks but
did not survive correction. Full details and scatterplots are reported in
the Supplementary Materials (Section S1).

For grey matter volume, only the correlation between the left
supramarginal gyrus and commission error difference survived correc-
tion. However, several other regions (e.g., pars triangularis, entorhinal
cortex, inferior parietal cortex) repeatedly showed nominally significant
associations across different behavioural metrics. This recurrence may
suggest that these areas are particularly relevant to the ability to
maintain performance under neural strain, warranting further
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investigation in larger samples (see Supplementary Materials Section S2
for full details).

4. Discussion

The primary goal of the current work was to gain more insight into
the underlying neural mechanisms of cognitive reserve in an elderly
population. We provided an operational definition and simple method
aimed at measuring cognitive reserve more directly and related this to a
variety of potential structural and functional neural markers. Here,
cognitive reserve was operationalised as the performance discrepancy (i.
e. reaction time, errors) between drowsy and alert states on a sustained
attention task. We hypothesised that the informational complexity of the
EEG signal, as quantified by Lempel-Ziv complexity for single channels
(LZsum), would decrease in low performers when transitioning from an
alert to a drowsy state, but would be maintained or increased in high
performers, reflecting a compensatory mechanism. Our approach treats
performance under drowsiness as a behavioural manifestation of
cognitive reserve in action, while acknowledging that this remains a
putative operationalisation rather than a definitive measure.

The main findings from our study show that in high performing in-
dividuals LZsum increases when transitioning from an alert to a drowsy
state, which contrasted with the pattern observed in low performers,
who showed no significant change in LZsum under similar conditions.
These LZsum effects were primarily observed in the frontal and central
regions demonstrating that there are region-dependent differences in
the modulating effect of arousal on LZsum, with the effect most pro-
nounced in regions related to attention, executive (frontal) (Kievit et al.,
2014), and sensorimotor (central) functioning (Kandel et al., 2013). This
finding is consistent with Boncompte et al. (2021), who reported an
increase in Lempel-Ziv complexity during propofol-induced mild seda-
tion in participants maintaining behavioural performance, which was
observed in the frontal electrodes. Taken together, increases in infor-
mational complexity under neural strain in the frontal areas may predict
higher levels of cognitive reserve, supported by the potential involve-
ment of the fronto-parietal control network in cognitive reserve (Kievit
et al., 2014; Stern et al., 2019). However, these findings need to be
interpreted with caution since the limited spatial precision of EEG means
that effects found in specific regions may originate from neighbouring
areas (Nunez & Srinivasan, 2006). However, the significant effect found
in the frontal and central regions, and the absence of an effect in other
regions (e.g. the occipital electrodes), suggests meaningful region-
dependent activity. Future research using neuroimaging methods with
higher spatial precision such as fMRI could complement our results and
would aid in a more detailed localisation of the effect.

Additionally, in concert with the above results, the LZsum correla-
tion results showed that a higher LZsum ratio (drowsy/alert) is associ-
ated with smaller performance differences (drowsy/alert for reaction
time, drowsy — alert for errors), indicating a better ability to maintain
task performance under drowsiness, with high performers showing
minimal decreases or slight improvements, and low performers experi-
encing a more substantial decline in performance. Furthermore, our
results showed LZsum values to be higher in high performers overall,
independent of the level of arousal, and this effect could be more clearly
observed during drowsiness. The consistent pattern across different
states of arousal and brain regions that differentiates high performers
from low performers highlights the potential role of individual differ-
ences in informational complexity as a neural marker of cognitive
reserve.

We also measured correlations between our measure of cognitive
reserve (i.e. performance difference alert vs. drowsy) and well-known
proxies of cognitive reserve, such as IQ and educational level, but no
significant correlations were found. Future studies with more diverse
cohorts, specially including individuals with lower education or cogni-
tive scores, may be better suited to detect such relationships. Further-
more, it could be that the statistical power of the study was too low to



L. Stolp et al.

uncover the expected association between the proxies of cognitive
reserve and ability to maintain task performance under neural strain.
LZsum may be a more sensitive measure so that even with low statistical
power a strong effect could still be found, but the relatively small sample
size may have limited the detection of more subtle effects. Future
research with larger samples could offer richer distributions and further
validate our findings. Additionally, other well-known proxies were not
included in the study such as current lifestyle and activity levels, social
life and leisure activities, and occupational complexity (Satz, 1993;
Scarmeas et al., 2001; Valenzuela et al., 2008). Proxies such as pre-
morbid IQ and educational level may not fully capture the current
contribution to cognitive reserve. Factors such as current leisure activ-
ities, social life and activity level may be of more influence in the elderly,
as these relate to current ongoing physical and mental engagement and
could be included in future studies.

At this stage, we cannot make definitive conclusions about whether
we have measured cognitive reserve. Our main result that shows infor-
mational complexity differences between high and low performers could
potentially be attributed to task-specific effects, such as the ability to
compensate for neural strain on a sustained attention task. However, a
similar effect of informational complexity differences between high and
low performers was found in the Boncompte et al. (2021) study, where
they used an auditory discrimination task. Auditory sustained attention
tasks and auditory discrimination tasks differ in specific demands (sus-
tained attention versus perceptual discrimination), suggesting the effect
may be reflecting a broader cognitive effect, instead of an effect that is
purely task specific. To further investigate whether our finding relates to
a broader cognitive compensatory mechanism, the experiment could be
replicated using a variety of different tasks related to different percep-
tual modalities, different types of cognitive functioning (e.g. memory)
and tasks that are more cognitively demanding (e.g. n-back task), and
using different types of neural strain (e.g. sleep deprivation, mild
sedation) to assess the ability to actively compensate for neural chal-
lenges and maintain cognitive performance.

Another important potential limitation to consider is that perhaps
our group of participants were too homogeneous in terms of proxies of
cognitive reserve. For instance, on average our participants had spent
18 years in education. In previous research that assessed the relationship
between educational attainment and cognitive reserve, low educational
attainment is defined as spending 8 years or less in education
(Valenzuela & Sachdev, 2006). Since our group consisted primarily of
highly educated participants it may be that a threshold was reached
beyond which additional years of education yield diminishing returns in
terms of further increasing cognitive reserve. A similar pattern was
observed for IQ: both estimated premorbid IQ (NART) and current fluid
intelligence (Cattell) scores were relatively high and showed limited
variability across participants. This homogeneity further limits the
ability to detect associations between these proxies and cognitive
reserve-related measures.

A study with the same drowsiness paradigm in patients with mild
cognitive impairment (MCI) and Alzheimer’s disease (AD) may lead to
additional insights of whether we are truly measuring cognitive reserve.
High cognitive reserve individuals with AD or MCI are characterised by
relatively well-preserved cognitive functioning given their advanced
brain pathology (Steffener & Stern, 2012). Therefore, if we compare
healthy elderly participants with patients with MCI and AD, using
objective measures of brain pathology (e.g. structural MRI) alongside
cognitive functioning assessments, we can more accurately differentiate
between high and low cognitive reserve patients. This clearer differen-
tiation could further our understanding of the experimental effects and
potentially validate the findings of the current work.

We also explored correlations between performance difference (alert
vs. drowsy) and cortical and hippocampal grey matter volume various
measures. For instance, there was a positive association between volume
in the left entorhinal cortex having an increase in reaction time while
drowsy and making more omission and commission errors. Of chief
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importance are frontal, parietal and medial temporal lobe (MTL) related
brain regions because of their involvement in Alzheimer’s Disease (AD).
These regions are crucial as they are implicated in core functions such as
memory, spatial orientation, and executive function, which deteriorate
in AD (Jack et al., 2010). It is worth noting that associations between
volumetric variations in the medial temporal lobe regions and the ability
to maintain performance under neural strain are of potential clinical
significance as these brain regions are among the earliest to atrophy in
AD (Jack et al., 2010). The observation that lower volume in the ento-
rhinal cortex correlates with increased ability to maintain performance
while drowsy potentially underscores the concept of cognitive reserve.
This counterintuitive finding suggests that individuals with higher
cognitive reserve may effectively utilise alternate neural pathways to
maintain cognitive performance despite structural brain changes, indi-
cating a complex interaction between the beginning stages of neural
degeneration and compensatory mechanisms. Furthermore, the left
inferior parietal cortex and pars triangularis also repeatedly showed
nominal associations across multiple performance metrics, although not
all survived correction. These recurring patterns suggest that further
investigation in larger, more diverse samples is warranted.

The left supramarginal gyrus, implicated in working memory, lan-
guage and phonological processing (Oberhuber et al., 2016) signifi-
cantly correlated with performance. Interestingly, the direction of
association in the supramarginal gyrus suggests that higher volume was
linked to more commission errors. This is in line with previous research
which has shown that correlations between structural preservation and
cognitive reserve proxies have shown mixed results within samples of
normal healthy elderly individuals (Querbes et al., 2009; Bartrés-Faz &
Arenaza-Urquijo, 2011). This contradiction may reflect the dual role of
cognitive reserve: enrichment throughout life supports structural
maintenance, but individuals with higher reserve can also tolerate more
neurodegeneration before showing cognitive decline (Valenzuela et al.,
2008; Stern, 2012). As a result, mixed findings are common in healthy
elderly samples, which may include both well-preserved individuals and
those in early stages of pathology.

Our network analysis of white matter connectivity revealed several
nominally significant associations between graph-theoretical network
metrics and performance under drowsiness. Specifically, correlations
were observed between performance differences and network charac-
teristics in the ventral attention, default mode, and frontoparietal con-
trol networks. Notably, there was an association between omission
errors and the mean participation coefficient in the frontoparietal con-
trol network, as well as the association between mean RT difference and
core-periphery structure in the ventral attention network. These findings
suggest that connectivity patterns within cognitive control and atten-
tional networks may play a role in individual differences in compensa-
tory capacity under neural strain. The remaining significant associations
did not survive correction and should be interpreted cautiously. A
relatively small sample size combined with many comparisons may have
reduced statistical power and potentially caused some genuine effects to
be missed. Therefore, any significant correlations before correction
should be seen as preliminary and warrant further investigation into the
role of grey matter volume, as well as network characteristics, in
cognitive reserve. The combination of the inconclusiveness of the
structural brain metrics and proxies of cognitive reserve in combination
with the strong results we found for LZsum suggests that complexity
measures such as LZsum derived from electrophysiological data during a
task are statistically robust and capture unique information that various
other metrics do not. Thus, we argue that LZsum is a strong neural
candidate to index cognitive reserve.

Interestingly, measures of informational complexity such as Lempel-
Ziv are used extensively in consciousness research. Informational
complexity measures have been shown to accurately assess anaesthetic
depth (Schartner et al., 2015; Shin et al., 2020), differentiate between
levels of consciousness in brain-injured patients (Chennu et al., 2014;
King et al., 2013), and are useful to study transitions in sleep stages
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(Casali et al., 2013), and show increased values in studies with psy-
chedelics (Schartner et al., 2017). These studies all show a similar
pattern: lower levels of consciousness correspond to lower informational
complexity, and vice versa. Critically, our findings present a counter-
example to the prevailing view that informational complexity purely
reflects conscious level. Given that in the high-performing group,
informational complexity dissociated from conscious state, our study
challenges how complexity measures are interpreted in consciousness
research. Our results suggest that the increase in complexity might be
related to the brain’s capacity to adapt and compensate under varying
cognitive demands, similar to other studies such as the work from
Boncompte et al. (2021) that explore subtler fluctuations in conscious-
ness (e.g. moderate sedation, drowsiness), where informational
complexity shows a more non-linear pattern. In this way, our work in-
vites a re-evaluation of how informational complexity is interpreted in
consciousness research.

In conclusion, the examination of differences in performance from
alert to drowsy states as an operational measure of cognitive reserve
offers a novel approach compared to traditional proxies such as educa-
tional level and IQ. This method directly captures the active process of
compensating for neural challenges, which is more representative of the
real-world scenarios faced by individuals with cognitive decline, and in
this way potential underlying neural markers of cognitive reserve can be
investigated. It remains to be determined whether compensatory
mechanisms observed under drowsiness fully generalise to other types of
neural strain, such as strain from age- and disease related neural
changes. However, drowsiness represents a well-defined and experi-
mentally controllable form of neural strain and given its relevance as an
early symptom in AD, serves as a meaningful starting point to assess
individual differences in compensatory capacity. While further work is
needed to determine how broadly these findings extend, compensatory
capacity revealed under one form of strain may nevertheless provide a
useful marker of cognitive reserve. Thus, the present findings should be
viewed as an important first step toward understanding these mecha-
nisms. Our results show potential for LZsum as a neural marker in
cognitive reserve assessment. Future validation of these findings could
lead to its use in clinical trials, particularly in evaluating cognitive
reserve as a factor in treatment response. For instance, assessing
cognitive reserve using LZsum in clinical trials for Alzheimer’s disease
medications could help control for cognitive reserve as a confounding
factor, leading to more precise and personalised treatment strategies.
Such applications could significantly advance the field of neurodegen-
erative disease treatment, offering new tools for clinicians in their efforts
to mitigate the impact of cognitive decline.
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