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A B S T R A C T

In Alzheimer’s disease (AD), a mismatch between neurological damage and cognitive functioning often is 
attributed to individual differences in cognitive reserve. Understanding the neural mechanisms of cognitive 
reserve, which may differ across individuals, could help to assess the therapeutic effectiveness of interventions in 
AD. Here, 38 elderly participants performed a sustained attention task during high-density EEG while alert and 
drowsy. We defined cognitive reserve operationally as the ability to maintain task performance under drowsi
ness, with less impairment indicating higher reserve. Investigating performance variations during the active 
management of neural challenges offers a novel approach to studying cognitive reserve, capturing dynamics that 
mirror everyday cognitive demand. We relate performance under neural strain to various measures, including 
informational complexity using the Lempel-Ziv (LZsum) algorithm. We found a significant interaction between 
arousal and performance: LZsum values increased in high performers when drowsy but decreased in low per
formers. This effect was most pronounced in the frontal and central areas. These findings suggest LZsum reflects a 
compensatory mechanism and has potential as a neural marker of cognitive reserve. Additional structural MRI 
and network analyses revealed performance-related associations in entorhinal cortex, supramarginal gyrus, and 
frontoparietal networks, suggesting broader neural correlates of compensatory capacity.

1. Introduction

Dementia is a neurodegenerative disease that causes a decline in 
cognitive function. Patients experience deficits in memory, language 
abilities, learning capacity, and executive processing. These impair
ments result in significant difficulties in performing everyday activities 
(Duthey, 2013). Alzheimer’s disease (AD) is the most common form of 
dementia and accounts for up to 70 % of dementia cases (WHO, 2019). 
Interestingly, there is not always a direct relationship between the level 
of cognitive decline and neuropathological severity (Katzman et al., 
1988). This phenomenon may be explained by a compensatory mecha
nism known as “cognitive reserve” (Stern, 2012). Although cognitive 
reserve is most frequently applied to dementia, the concept of cognitive 

reserve aims to explain individual variability in cognitive functioning 
and clinical status in the broader context of any neurological or psy
chiatric strain. In high cognitive reserve dementia patients, advanced 
neurodegeneration has been observed in concurrence with relatively 
well-preserved cognition (Steffener & Stern, 2012). Recent theoretical 
work has questioned whether cognitive reserve is best understood as a 
distinct compensatory mechanism or simply as a reflection of our cur
rent limitations in measuring all relevant aspects of brain structure and 
function (Paap, 2024). Specifically, it has been argued that the apparent 
mismatch between pathology and cognitive function may reflect un
known neural mechanisms or structures not detectable by conventional 
imaging or assessments. Nevertheless, the term ‘cognitive reserve’ re
mains widely used to describe these individual differences, while 
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acknowledging that ongoing research, such as the present study, aims to 
further clarify its neural basis.

In recent years, most AD clinical trials have failed to show significant 
differences between drug and placebo groups, a situation that may be 
explained by the irreversible neurological damage that may be present 
many years before AD symptoms emerge (Cummings et al., 2018). 
Disease progression markedly differs between patients with high and 
low cognitive reserve. In patients with high cognitive reserve clinical 
symptoms often present much later in the disease progression compared 
to low cognitive reserve patients, and thus, they can maintain their 
cognitive functioning for longer. However, once symptoms appear, their 
cognitive decline accelerates and is often more rapid than in patients 
with low cognitive reserve (Stern, 2012). The masking effect of high 
cognitive reserve on the severity of the condition necessitates more 
precise diagnostic methods for these patients. Furthermore, when the 
disease is caught at an earlier stage, treatment with currently available 
medication may be more successful and prevent further damage. For this 
very reason, current research into pharmacotherapy for AD is focused on 
the preclinical stage where pathology is present in the absence of neu
ropsychological symptoms (Huang et al., 2023). In clinical trials, it is 
crucial to consider and stratify cognitive reserve, since these trials often 
assess differences in the rate of decline in patients to determine drug 
treatment effectiveness compared to a placebo. If the level of cognitive 
reserve is not accounted for, cognitive reserve could be a strong con
founding factor in clinical research, which might lead to incorrect con
clusions about the (in)effectiveness of a given treatment. Therefore, a 
direct measure to assess a patient’s level of cognitive reserve would be 
beneficial.

Closely related to cognitive reserve is the concept of brain reserve. 
Brain reserve refers to structural reserve in the form of higher brain 
volume and greater neural density. Individuals with this type of surplus 
capacity are better able to cope with the strain of age- or disease related 
changes and maintain cognitive functioning for longer (Fratiglioni & 
Wang, 2007). In contrast to the passive construct of brain reserve, 
cognitive reserve is defined in terms of active adaptability (i.e. flexibility, 
capacity, efficiency) of functional brain networks and neural commu
nication. With high adaptability the brain actively resists the effects of 
ageing and pathology, and preserves cognitive functioning (Stern et al., 
2020). Just as individuals differ in their structural reserve of the brain, 
there are individual differences in the adaptability of functional brain 
processes. Traditionally, cognitive reserve has been associated with 
various demographic and lifestyle characteristics (Satz, 1993; Scarmeas 
et al., 2001; Valenzuela et al., 2008). Proxies of cognitive reserve such as 
occupational complexity, educational level or premorbid IQ have been 
shown to moderate the relationship between neural changes and clinical 
status but are not direct measures of cognitive reserve. It is not clear 
whether and how these factors are fundamental to the construct of 
cognitive reserve. As a result of the uncertainty about its precise nature, 
cognitive reserve has often been measured as a latent variable (Jones 
et al., 2011; Stern et al., 2019).

A way to measure cognitive reserve more directly may be to 
temporarily strain the neural system and compare baseline task per
formance against performance under neural strain. For instance, 
inducing drowsiness experimentally could be a suitable approach. 
Drowsiness is a reversible and common way of straining the neural 
system (Nilsson et al., 2005; Goupil & Bekinschtein, 2012). High levels 
of drowsiness are associated with cognitive impairment (Durmer & 
Dinges, 2005; Lacaux et al., 2024). The degree to which an individual 
experiences cognitive impairment due to drowsiness may reflect indi
vidual differences in cognitive reserve. Moreover, AD symptoms and 
sleep disturbances are highly associated factors. Furthermore, sleep 
problems are one of the first emerging symptoms of AD, suggesting that 
brain areas related to circadian control and sleep are impacted early in 
the disease pathogenesis. Individuals suffering from mild cognitive 
impairment, often an early sign of AD, exhibit certain EEG abnormal
ities, such as a reduction in slow-wave-sleep (SWS) and sleep spindles 

(Ju et al., 2014). Sleep disturbances can lead to excessive daytime 
napping, drowsiness, and an increase in cognitive symptoms (Moran 
et al., 2005; Ju et al, 2014). The importance of sleep disturbances in AD, 
coupled with the notion that the degree of drowsiness-induced cognitive 
impairment might reflect variations in cognitive reserve, suggests that 
level of arousal could be a useful experimental manipulation in the 
context of AD research and cognitive reserve.

Many studies have investigated how cognitive reserve is imple
mented on a neural level (Stern et al., 2019). As our understanding 
advances, the aim is to transition from proxy measures to direct neural 
markers that may aid a more accurate assessment of cognitive reserve. 
Since cognitive reserve is defined in terms of adaptability (i.e. flexibility, 
capacity, efficiency) of brain networks and neural communication (Stern 
et al., 2019), high cognitive reserve might be related to generally more 
efficient information processing. It remains an open question whether 
cognitive reserve reflects a single neural mechanism or a variety of 
mechanisms that can differ between individuals. In this study, we focus 
on one proposed neural correlate, informational complexity, but 
acknowledge that multiple mechanisms may be involved. A novel line of 
research involves quantifying informational complexity in the brain and 
relating this to different levels of (un)consciousness (Schartner et al., 
2015; Chennu et al., 2014; Casali et al., 2013; Pascovich et al., 2022). 
Furthermore, recent research indicates individual differences in per
formance under neural strain are related to informational complexity 
(Boncompte et al., 2021). In a study that examined informational 
complexity of electroencephalograph (EEG) signals when participants 
underwent mild propofol sedation while performing an auditory 
discrimination task, high performers were shown to maintain or increase 
informational complexity, whereas informational complexity decreased 
in low performers. This effect was most pronounced in the frontal re
gions (Boncompte et al., 2021), which is noteworthy given the 
involvement of the frontal regions in attention, executive processes and 
cognitive control (Kievit et al., 2014; Stern et al., 2019). Given these 
findings, informational complexity could be a promising neural corre
late for assessing cognitive reserve. A well-established approach to 
measuring informational complexity is by using the Lempel-Ziv (LZsum) 
algorithm, which assesses the compressibility of a given signal such as 
an EEG recording. Higher compressibility of a signal indicates lower 
informational complexity and vice versa (Lempel & Ziv, 1976). LZsum 
has been used extensively in consciousness studies and has more 
recently been applied to research on individual differences in informa
tional complexity under neural strain in healthy young adult partici
pants (Boncompte et al., 2021).

The current study aimed to measure cognitive reserve directly and 
relate it to a range of neural measures. In this EEG study, 38 elderly 
healthy participants who already had undergone structural MRI scans 
carried out a sustained attention task under two arousal states: alert and 
drowsy. Task performance metrics included mean reaction time, varia
tion of reaction time, and error-based metrics. Here, cognitive reserve 
was putatively operationally defined as the degree to which task per
formance was impaired under drowsiness compared to alertness, 
reflecting the participant’s ability to actively compensate for neural 
strain. We hypothesised LZsum values to decrease under drowsiness in 
low performers but expected similar or even higher complexity values in 
high performers when comparing drowsiness to alertness, especially in 
frontal regions, in line with previous research (Boncompte et al., 2021; 
Kievit et at., 2014). Additionally, we examined the relationship between 
cognitive reserve and both structural volume in cortical and hippo
campal areas, and network analyses of white matter connectivity. This 
approach aims to provide a comprehensive understanding of the po
tential neural underpinnings of cognitive reserve, so we can draw more 
robust conclusions from a variety of neuroimaging metrics. By using 
performance under neural strain (i.e. drowsiness) to define cognitive 
reserve and using informational complexity measures, this study aims to 
fill a critical gap in the literature by introducing a more direct measure 
of cognitive reserve, grounded in neurophysiology. Finally, 
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incorporating both functional and structural neural markers provides a 
comprehensive exploration of cognitive reserve, which could aid in the 
development of targeted therapeutic interventions in Alzheimer's dis
ease and related dementias.

2. Methods

2.1. Participants

38 Elderly participants (16 females, 22 males) with an average age of 
73.16 years (SD = 5.26, range 60–84) performed the auditory version of 
the sustained attention to response task (SART) (Seli et al., 2012) while 
their EEG was recorded. For this study, we recruited participants whose 
structural magnetic resonance imaging (MRI) scans (T1-weighted and 
diffusion weighted imaging) had already been obtained through 
collaborative research projects conducted within two years before the 
data collection of the present study (Gellersen et al., 2023). The exper
imental procedure took place at the EEG lab of the consciousness and 
cognition research group of the University of Cambridge. On session 
days, participants were asked to refrain from the consumption of any 
caffeinated beverages. Participants were paid £10 per hour as reim
bursement for their time. The experiment lasted approximately 3.5 h in 
total including EEG setup, experiment, and cognitive tests. Before the 
experiment, participants gave their written informed consent. Ethical 
approval was given by the Psychological research Ethics Committee at 
the University of Cambridge (CPREC2014.25)

Before the start of the experimental task, the participants were 
subjected to a battery of cognitive tests. Fluid intelligence was deter
mined by participant performance on the Cattell Culture Fair Intelli
gence Test (scale 2A, Cattell, 1973). Premorbid IQ (i.e. WAIS IQ) was 
estimated using the National Adult Reading Test (NART). (Nelson & 
Willison, 1991). Additionally, we included participants’ scores from the 
Montreal Cognitive Assessment (MoCA), which had been conducted two 
years prior during the initial study visit (Gellersen et al., 2023). The 
MoCA is a brief 10-minute screening tool to assess cognitive functioning 
with a maximum score of 30 points. It is often used by first-line clinicians 
in the assessment of patients with mild cognitive complaints. The test 
consists of several parts to assess various cognitive domains, including 
memory, executive functioning, attention, and language (Nasreddine 
et al., 2005). A score of 26 points or above is considered normal, while a 
score lower than 26 indicates cognitive impairment, with lower scores 
representing worse impairment. In our cohort, 6 participants scored 
below 26 points. Furthermore, on average there was a stark difference 
between current fluid IQ (Cattell) and NART IQ, with the latter being 
considerably higher. Since healthy ageing is a cause of neural strain 
(Whalley et al., 2004), the observed difference in our participant group 
between estimated premorbid IQ and current levels of cognitive func
tioning aligns with expectations. The NART provides an estimate of 
premorbid (‘peak’) intelligence, which is generally resistant to early 
cognitive decline, while the Cattell measures current fluid intelligence, 
which is more sensitive to age-related changes and neural strain. By 
comparing these two scores, we can better distinguish between lifelong 
cognitive ability and any decline that may have occurred, thus capturing 
both stable and dynamic aspects of cognition relevant to cognitive 
reserve. See Table 1 for a detailed summary of participant 

characteristics.

2.2. Experimental procedure

In the auditory version of the SART, participants were instructed to 
respond to certain auditory stimuli and inhibit responses in reaction to 
others (Seli et al., 2012). As part of the experimental setup, levels of 
arousal were manipulated in the following way. Before the task, par
ticipants were seated in a reclining chair in a darkened room and pro
vided with blankets and pillows to ensure their comfort. The participants 
were given the following instructions: a) to close their eyes and keep 
them closed throughout the task, b) to minimise any movements, c) to 
continue the task even if they made mistakes, and, d) not to worry if they 
felt drowsy during the task. However, if a participant fell asleep, as 
indicated by three consecutive non-responsive trials, an audio recording 
was played to wake them up. If the recording failed to wake the 
participant, the experimenter manually woke them up. The purpose of 
this setup was to induce drowsiness. The expectation was that partici
pants would be relatively alert at the start of the task, but increasingly 
drowsy as the experiment progressed, aiding the comparison of perfor
mance in alert and drowsy states.

Prior to the onset of the SART, participants completed a resting state 
block (5 min). The SART involved the randomised auditory presentation 
of numbers between 0 and 9, extracted from a vocal recording database 
(Sayanng, 2009). Participants were instructed to respond to each num
ber by pressing a button, except for the number '3′, the target stimulus, to 
which they had to withhold a response. Stimulus randomisation was 
modulated by two parameters: first, the target stimulus was not pre
sented more than three times consecutively; second, the target stimulus 
was only presented in 10 % of trials. Participants initially performed a 
practice block consisting of 30 trials (2.5 min), with a fixed response 
window of 1100 ms. For the main task, the duration of the response 
window was determined by the mean reaction time of the participants 
during the practice block (i.e. mean RT + 250 ms). The end of the 
response window was signalled by a 'beep' sound (SoundJay, 2009), 
followed by an inter-trial interval lasting between 2 and 5 s. The task 
consisted of 700 trials in total and was divided into two blocks of 350 
trials each, with a 3-minute break in between. See Fig. 1 for an overview 
of the trial structure.

2.3. EEG details

2.3.1. EEG acquisition details
A Philips EGI EEG system with 129 channels (Electrical Geodesics, 

Inc.) was used to collect EEG data. The recordings were obtained with 
Netstation software running on a Mac computer and sampled at a fre
quency of 1000 Hz.

2.3.2. EEG preprocessing
Down-sampling of the data to 250 Hz was done using Netstation 

Tools software (EGI, Electrical Geodesics, Inc.) after which the data was 
imported to EEGLAB (Delorme and Makeig, 2004) for MATLAB format 
(version 2019a, MathWorks, Inc) using the mffmatlabio plugin (Delorme 
et al., 2019). The Automagic system (Pedroni, Bahreini, and Langer, 
2019) was used to standardise the pre-processing pipeline. First, the 
PREP algorithm (Bigdely-Shamlo et al., 2015) was used to detect and 
remove noisy channels. The remaining channels were then filtered using 
a high-pass cut-off of 1.0 Hz and a low-pass cut-off of 35 Hz. Next, an 
independent components analysis was performed on the data. Artefac
tual components were automatically rejected using the open-source 
EEGLAB plug-in MARA (Winkler et al., 2014). Removed channels 
(mean = 11.42, SD = 7.25) were then spherically interpolated. The data 
was pre-trial epoched into periods of four seconds preceding each 
stimulus onset, and noisy epochs were automatically rejected (mean = 6, 
SD = 4.31) based on threshold values of ± 150 μV or slopes of more than 
60 μV using the manage badTrials plugin for EEGLAB (Jagannathan 

Table 1 
Participant Characteristics.

N ¼ 38 (♀= 16, ♂ = 22) Mean (SD) Median Range

Age 73.16 (5.26) 73.5 60 – 84
Years of Education 18.01 (4.68) 18 10 – 39
MoCA score 27 (1.76) 27 23 – 30
NART IQ 120.63 (6.02) 121 105 – 129
Cattell IQ 97.18 (10.49) 96 79 – 122
NART – Cattell 23.48 (11.74) 25.5 − 10 – 42
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et al., 2018).

2.3.3. Drowsiness classification
To determine the level of arousal for each 4-second epoch, a machine 

learning algorithm was used that had previously been validated for 
classifying levels of arousal (Jagannathan et al., 2018). The algorithm 
was trained using microstate variations in alertness and drowsiness 
derived from the EEG signal of eyes-closed experiments. Specifically, the 
algorithm is based on the Hori-scale, which divides the sleep onset 
process into nine stages ranging from wakefulness (stages 1–2) to the 
onset of N2 sleep (stage 9) (Iber et al., 2007). The algorithm computes 
predictor frequency variance and cross-frequency coherence features, 
which are then used to differentiate between alertness and drowsiness. 
Alertness is determined by the presence of Alpha wave trains (> 50 %) 
(Hori: 1 – 2), whereas the transition from alertness to drowsiness is 
typically characterised by a reduction in Alpha activity (Hori: 3 = Alpha 
< 50 %) and an increase in Theta waves (Hori: 5). The EEG data is then 
further analysed to detect graphoelements (i.e. vertex, spindles, and K- 
complexes) which are used to classify the level of drowsiness as either 
'mild' when no graphoelements are present or 'severe' in case graph
oelements do occur (Jagannathan et al., 2018). In the present study, 
trials classified as severely drowsy were merged with those classified as 
mildly drowsy due to the lack of severely drowsy trials in most partici
pants. The resulting levels of arousal were categorised as 'alert' and 
'drowsy' for analysis of within- and between-participant effects.

2.3.4. Lempel-Ziv (LZ) complexity algorithm
The LZ algorithm computes complexity by determining the number 

of non-redundant patterns in the given data and is therefore inherently a 
measure of signal diversity (Lempel & Ziv, 1976). LZ is a widely 
recognized measure of informational complexity and has previously 
been applied to the EEG signal (Casali et al., 2013; Schartner et al., 
2015). In our study, we applied the LZ algorithm in its single-channel 
form, known as LZsum, which focuses on capturing the temporal di
versity within individual EEG channels. To compute LZsum, EEG data 
was first transformed into a binary sequence based on a threshold 
derived from the instantaneous amplitude of the Hilbert transform, 
following the approach used by Schartner et al. (2015). This binary 
representation assesses signal complexity by identifying unique patterns 
within the sequence. The LZsum value, ranging from 0 (indicating no 
diversity) to 1 (indicating maximum diversity), provides an insight into 
the complexity of the EEG signal, where higher values denote a less 
compressible, more diverse signal. See Schartner et al. (2015) for a 
detailed explanation of the LZ algorithm and its application to EEG data.

2.4. MRI Details

2.4.1. MRI image acquisition
Structural MRI and Diffusion Weighted Images (DWI) were acquired 

at the MRC Cognition and Brain Sciences Unit of the University of 
Cambridge. Here, whole-brain T1-weighted (1x1x1 mm) MRI image 
acquisition was performed using a 3-Tesla Trio Siemens scanner (32- 
channel coil). As previously described in Gellersen et al. (2023, [p. 92]), 
the following acquisition parameters were used: “a whole-brain T1- 
weighted (1 × 1 × 1 mm) magnetization-prepared rapid gradient-echo 
(MPRAGE) sequence with a repetition time (TR) of 2300 ms, an echo 
time (TE) of 2.96 ms, a field of view (FOV) of 256 mm, flip angle of 9◦, 
and 176 sagittal slices.” The acquisition was done in an interleaved, 
bottom-up order. Diffusion Weighted Imaging (DWI) was performed 
using isotropic voxel resolution (2x2x2mm3) and an interleaved slice 
acquisition method to minimise cross-talk artefacts between slices. The 
following acquisition parameters were used: a total acquisition time of 
10 min and 14 sec, a repetition time (TR) of 8500 ms, an echo time (TE) 
of 90 ms, a field of view (FOV) of 192 mm x 192 mm, with a matrix size 
of 96 x 96, resulting in a resolution of 2 mm x 2 mm. Imaging was 
conducted in 2D with a total of 68 slices, each 2 mm thick, and without 
any slice gap. The sequence included 64 diffusion directions with two 
diffusion weightings, characterized by b-values of 0 s/mm2 and 1000 s/ 
mm2. Parallel imaging was employed using the GRAPPA technique, with 
an acceleration factor in the phase-encode (PE) direction of 2 and 40 
reference lines in the PE (Gellersen et al., 2023).

2.4.2. Structural MRI preprocessing
In our study, structural MRI data underwent processing and parcel

lation to analyse cortical volumes and hippocampal subfields. We used 
FreeSurfer software for the segmentation of T1-weighted scans, 
obtaining total intracranial volume (TIV) and volumetric measures of 
cortical regions. The cortical regions were parcellated according to the 
Desikan-Killiany atlas (Desikan et al., 2006; Fischl and Dale, 2000). For 
more information on the cortical parcellation process, readers are 
referred to the FreeSurfer wiki page on Cortical Parcellation [https://sur 
fer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation]. Manual seg
mentations of the T2 images were previously obtained by two inde
pendent raters (authors HMG and BFG in Gellersen et al., 2023) to 
delineate MTL sub-regions using the ITK-Snap software (Version 3.6.0; 
https://www.itksnap.org) (Yushkevich et al., 2006) and following a 
protocol developed by Carr and colleagues (2017). This method allowed 
a precise delineation of the perirhinal cortex (PRC), entorhinal cortex 
(ERC), parahippocampal cortex (PHC), and the hippocampal subfields 
comprising the subiculum, CA1, a combined CA2-4/dentate gyrus re
gion, and the hippocampal tail. For more details see Gellersen et al. 
(2023).

Fig. 1. Single-trial structure of the auditory version of the Sustained Attention to Response Task (SART). At the start of each trial, a recording was played of a 
number between 0 and 9 (e.g. 4). The participant had to press a button after hearing the number, except when hearing the number 3 (i.e. target stimulus) when a 
response should be withheld. The length of the response window was determined for each participant by their average response time during the practice run plus 250 
ms. The end of the response window was indicated with a beep followed by a random inter-trial interval of 2 to 5 s.
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2.4.3. Diffusion image preprocessing
For the DWI preprocessing, we used the same approach described in 

Luppi et al. (2021). Here, MRtrix3 tools were used to preprocess the 
diffusion-weighted images (Tournier et al., 2019). First, we manually 
removed the diffusion-weighted volumes that showed a considerable 
degree of distortion. After completion of this step, the pipeline consisted 
of the following steps: (1) Using the dwidenoise command, diffusion data 
were denoised with a technique that utilises DWI data redundancy in the 
PCA domain (Veraart et al., 2016), (2) The images were corrected for 
eddy current distortion and motion by registration of all diffusion im
ages to b0 with the use of FSL’s eddy tool through the dwipreproc com
mand of MRtrix3, (3) The diffusion gradient vectors were rotated to 
correct participant motion as estimated by the eddy tool, (4) Using the 
dwibiascorrect command, DWI volumes were corrected for b1 field in
homogeneity, (5) We used a combination of FSL BET commands and 
MRtrix3 dwi2mask to create a brain mask.

We used DSI Studio (https://www.dsistudio.labsolver.org) to 
reconstruct the diffusion tensor imaging (DTI) data from the pre
processed diffusion data. Specifically, we applied q-space diffeomorphic 
reconstruction (QSDR) (Yeh et al., 2011) which is a previously-validated 
technique to reconstruct structural networks. This model-free technique 
maintains the fiber geometry continuity for fiber tracking and conserves 
the diffusible spins by computing the orientational distribution of water 
diffusion density in standard space. The first step consists of the recon
struction of DWIs in native space and quantitative anisotropy (QA) 
calculation per voxel. Using the acquired QA values, the brains are then 
warped in Montreal Neurological Institute (MNI) space to a template QA 
volume with the nonlinear registration algorithm of the statistical 
parametric mapping (SPM) application. After converting the images to 
MNI space, the final step of the QSDR consists of reconstructing spin 
density functions (SDFs) using the following parameters: mean diffusion 
distance = 1.25 mm, 3 fiber orientations for each voxel (Yeh et al., 
2011).

To identify the connectivity between brain areas, we employed 
deterministic fiber tracking using a “FACT” algorithm with 1,000,000 
streamlines. For this aim, we used the following previously-validated 
parameters (Luppi & Stamatakis, 2021; Medaglia et al., 2016) as pre
viously described in (Luppi & Stamatakis, 2021, [p.99]) and (Luppi 
et al., 2021, [p. 35, biorxiv]): “angular cutoff = 55◦, step size = 1.0 mm, 
tract length between 10 mm (minimum) and 400 mm (maximum), no 
spin density function smoothing, and QA threshold determined by DWI 
signal in the cerebrospinal fluid.” To generate a white matter mask, a 
standard threshold of 0.6 Otsu is automatically employed by DSI Studio 
to threshold the spin density function’s anisotropy values. The mask is 
then used to automatically check every streamline, to exclude stream
lines with incorrect termination locations (Luppi & Stamatakis, 2021; 
Medaglia et al., 2016).

2.4.4. Parcellation & network modules
We used a parcellation method, developed by Schaefer et al. (2018), 

to divide the structural MRI brains into 100 cortical regions of interest (i. 
e. network nodes). Next, all network nodes were allocated to one of the 
seven subnetworks as previously defined by Yeo et al. (2011). The 
different subnetworks were numbered in the following way: 1. Visual 
areas (VIS), 2. Somatomotor system (SOM), 3. Dorsal Attention Network 
(DOR), 4. Ventral Attention Network (VEN), 5. Limbic regions (LIM), 6. 
Frontoparietal Control Network (FPC), and 7. Default Mode Network 
(DMN).

2.5. Statistical analysis

2.5.1. Behavioural performance and exclusion
All statistical analyses were executed in MATLAB (R2021a – 

R2025a); visualisations were produced in MATLAB or R (ggplot2 3.5). 
Raincloud plots were produced using the Raincloud plots package (Allen 
et al., 2021). To determine performance on the SART, we analysed the 

mean reaction times (RT), the coefficient of variation of reaction time 
(CV RT), and the proportion of commission errors and omission errors of 
each participant. The CV RT determined RT variability and was 
computed as the standard deviation divided by the mean. The propor
tion of commission errors was defined as the sum of all target trials with 
a response (i.e. errors due to responding when the participants should 
not have) divided by the sum of all target trials. Proportion of omission 
errors was defined as the sum of all non-target trials without a response 
(i.e. errors due to not responding when the participants should have) or 
a response made after the end of the response window, divided by the 
sum of all non-target trials. The following exclusion criteria were used: 
(1) Target trials were excluded from further analysis when they imme
diately followed three succeeding non-target trials where no response 
was given, to ensure that seemingly correct response omissions on target 
trials were not due to the participant being asleep, (2) Participants were 
excluded from all analyses involving reaction time data when they had 
fewer than 50 alert or drowsy trials, (3) Participants were excluded from 
all analyses involving commission error data when they had fewer than 
10 alert or drowsy target trials. Additionally, we assessed the presence of 
trains of omission errors, defined as sequences of at least three consec
utive omission errors, indicative of the participant being asleep rather 
than genuinely failing to respond. This analysis aimed to distinguish 
between true omission errors and those resulting from sleep. Two par
ticipants exhibited a significantly higher incidence of trains of omission 
errors, indicating either sleep or other forms of non-compliance, and 
thus were additionally excluded from analyses concerning omission 
errors. As a result, 34 participants were included in analyses concerning 
measures of RT (mean RT and CV RT), 32 participants were included in 
omission error-related analyses, and 28 participants were included in 
commission error-related analyses.

2.5.2. Ranking
To evaluate how well the participants were able to maintain their 

performance level under the neural strain of drowsiness, we calculated 
the difference between alert and drowsy states for each of the four- 
performance metrics: mean RT (drowsy/alert ratio), CV RT (drowsy/ 
alert ratio), commission (drowsy minus alert) and omission errors 
(drowsy minus alert). Generally, participants performed worse while 
drowsy, although there were some exceptions in which the score slightly 
improved while drowsy. Participants were ranked based on the perfor
mance difference between alertness and drowsiness, ranging from par
ticipants exhibiting little performance decline or even performance 
improvement (high performers), to those who experienced the greatest 
decline in performance between drowsiness and alertness (low per
formers). For the purpose of the ANOVA analyses, we divided the par
ticipants into two groups using median split, where the bottom half were 
classified as low performers, and the top half as high performers.

2.5.3. LZsum and regions of interest
To evaluate the complexity level of each participant for both levels of 

arousal, LZsum values were averaged across trials and electrodes for 
both alertness and drowsiness. Next, we performed two-way mixed 
factor ANOVAs to analyse the interaction between level of arousal 
(alert/drowsy) as the within-subject factor, performance (high/low) as 
the between-subject factor, and LZsum as the dependent variable. To 
further investigate the potential interaction between level of arousal and 
performance, we conducted the above-described analysis again, but now 
with one extra factor: regions of interest (ROIs). Using the same 
approach as described in Folland et al. (2015), we divided 90 of the 129 
electrodes into five areas (frontal, central, temporal, parietal, and oc
cipital) for both the left and right hemispheres, which resulted in 10 
ROIs in total. Each ROI consisted of approximately 16 to 20 electrodes, 
then averaged to represent the EEG activity from that brain area. 
Midline electrodes were excluded to aid an accurate comparison of the 
left and right hemispheres. Also, the outermost electrodes were excluded 
to avoid interference from facial muscle artefacts. Next, LZsum was 
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computed for each ROI, and per condition (alert/drowsy). Finally, we 
performed three-way mixed factor ANOVAs to analyse the interaction 
between level of arousal (alert/drowsy) and ROI as the within-subject 
factors, performance (high/low) as the between-subject factor, and 
LZsum as the dependent variable.

2.5.4. Statistics
For each of the four performance metrics (i.e. mean RT, CV RT, 

commission errors, omission errors), we performed a two-way mixed 
factor ANOVA with a within-subject factor Arousal (alert, drowsy) and a 
between-subject factor Performance (high, low), and outcome variable 
LZsum. To explore regional effects, we repeated the whole-brain anal
ysis with region of interest (ROI) as an additional within-subject factor, 
yielding a three-way mixed factor ANOVA. For the effect sizes, we report 
partial η2 for ANOVAs, and Cohen’s d for t-tests.

Normality and homogeneity of variance were checked before each 
mixed-factor ANOVA. To test for normality, the Shapiro–Wilk test was 
applied to the model residuals (α = 0.05). To test for homogeneity, 
Levene’s test applied separately to the Alert and Drowsy conditions. For 
the two-way mixed factor ANOVA, all metrics met both assumptions, 
therefore the standard ANOVA results are reported throughout.

For the three-way mixed factor ANOVA, Levene’s test was applied to 
each ROI (alert and drowsy separately) for all four behavioural metrics. 
Using a Bonferroni-adjusted α = 0.0125 within ROI (0.05/4 tests), none 
of the variance tests reached significance, indicating that the homoge
neity assumption was satisfied (Maxwell, Delaney, & Kelley, 2017). We 
therefore conclude that the equal-variance assumption is satisfied and 
interpret the ANOVA results without further correction. Residual 
normality was assessed with the Shapiro–Wilk test. Only mean RT met 
the assumption [g1 = -0.01, g2 = -0.16]. CV RT, omission errors and 
commission errors showed mild violations, but skewness and excess 
kurtosis [CV RT: g1 = 0.08, g2 = -0.32; Commission Errors:: g1 = 0.35, g2 
= -0.23; Omission Errors: g1 = -0.07, g2 = -0.25) were close to Gaussian 
and group sizes were balanced. Mixed-factor ANOVA is robust to mod
erate deviations from normality when group sizes are balanced and 
variances are homogeneous (Maxwell et al., 2017; Blanca et al., 2017). 
Therefore, the standard ANOVA without further correction was 
reported.

3. Results

3.1. Group comparisons

First, we examined performance from a group-level perspective. 
Participants were categorised into high and low performers to investi
gate the relationship between group-level performance, LZsum (both 
whole brain and ROI-based), and levels of arousal (drowsy vs. alert).

3.1.1. LZsum in high and low performers across arousal states
We performed a two-way mixed factors ANOVA for each of the 4 

performance metrics (mean RT, omission errors, commission errors, and 
CV RT) to examine the interaction between arousal level (drowsy, alert) 
and performance (high, low) with LZsum as the outcome variable. This 
analysis aimed to investigate differences in informational complexity 
between high and low performers during different states of arousal. In 
this way, we aimed to study LZsum as a potential neural marker for the 
underlying compensatory mechanism that allows high performers to 
maintain their performance level while under neural strain. Our results 
show a significant interaction effect (performance x arousal) for mean 
RT [F(1,32) = 5.97, p = 0.020, ηp2 = 0.16], depicted in Fig. 2a, and 
omission errors [F(1,30) = 10.16, p = 0.003, ηp2 = 0.25], shown in 
Fig. 2b. However, no significant interaction effect was found for com
mission errors [F(1,26) = 0.81, p = 0.376, ηp2 = 0.03] or CV RT [F(1,32) 
= 0.29, p = 0.592, ηp2 = 0.01]. Further post-hoc t-tests showed that high 
performers exhibited a significant increase in LZsum when drowsy 
compared to an alert state. This was the case for both mean RT [t(16) =
-4.08, p < 0.001, Cohen's d = − 1.02] and omission errors [t(15) = -4.91, 
p < 0.001, Cohen's d = -1.27]. Conversely, no significant differences 
were found between drowsy and alert states for low performers in terms 
of mean RT [t(16) = -0.68, p = 0.506, Cohen's d = -0.05] and omission 
errors [t(15) = -0.18, p = 0.861, Cohen's d = -0.05]. We also conducted t- 
tests to assess the LZsum differences between high and low performers in 
each arousal state. These showed that compared to low performers, high 
performers exhibit significantly higher LZsum values in the alert state 
for mean RT [t(32) = 3,28, p = 0.003, Cohen's d = 1.16], but not 
omission errors [t(30) = 1.73, p = 0.09, Cohen's d = 0.63]. In drowsy 
states high performers had significantly higher LZsum values for both 
mean RT [t(32) = 4.49, p < 0.001, Cohen's d = 1.59] and omission errors 
[t(30) = 3.01, p = 0.005, Cohen's d = 1.10]. These results show that the 
differences between the high performing and low performing group 

Fig. 2. LZsum in alert and drowsy states: comparing high to low performers. A. This panel displays a rain cloud plot showing the variations of LZsum values 
derived from whole-brain EEG signals across alert and drowsy conditions. Participants are divided into two groups based on their mean reaction times (RT) when 
performing the auditory version of the Sustained Attention to Response Task (SART). High performers are represented in red and low performers in blue. B. Similar to 
panel A, but here, participants are categorised into high and low performers based on the number of omission errors when performing the SART. (p ≤ 0.05 *), (p ≤ 
0.01**), (p ≤ 0.001***). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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became more apparent in the drowsy state. Furthermore, LZsum 
appeared to be higher overall in high performers compared to low 
performers for both mean RT [t(66) = 5.49, p < 0.001, Cohen's d = 1.35] 
and omission errors [t(62) = 3.35, p = 0.001, Cohen's d = 0.85]. The 
observed significant increase in LZsum for high performers while 
drowsy contrasted with the absence of this effect in low performers, 
suggests an underlying compensatory mechanism that enabled high 
performers to maintain their performance levels despite the neural 
strain of by drowsiness. Additionally, we performed the two-way mixed- 
factor ANOVAs with education, IQ (Cattell and NART, and NART −
Cattell), MoCA and age entered individually as covariates. The signifi
cant interaction effect between arousal and performance (mean RT, 
omission errors) persisted in all cases, indicating that these covariates 
did not account for the observed effects.

3.1.2. Region of interest analysis of LZsum in high and low performers 
across arousal states

We conducted three-way ANOVA analyses to examine the interac
tion between performance, level of arousal, and region of interest (ROI) 
with LZsum as the outcome variable. In this way, we aimed to investi
gate which ROIs are most involved in the effect that showed LZsum 
differences when comparing high performers and low performers across 
different levels of arousal. Notable variations were observed across 
different performance metrics. For CV RT, there was a highly significant 
three-way interaction effect [F(9, 288) = 3.23, p < 0.001, ηp2 = 0.09], as 
well as a significant two-way interaction between performance and ROI 
[F(9,288) = 2.62, p = 0.006, ηp2 = 0.08]. However, no significant 
interaction was found between performance and arousal [F(1,32) =
0.13, p = 0.723, ηp2 < 0.01], and the main effect of performance was 
also not significant [F(1,32) = 0.53, p = 0.471, ηp2 = 0.02]. In the case of 
mean RT, no significant three-way interaction was found [F(9, 288) =
1.21, p = 0.291, ηp2 = 0.04], and the two-way interaction between 
performance and ROI [F(9, 288) = 1.67, p = 0.096, ηp2 = 0.05] was also 
not significant. The interaction between performance and arousal was 
significant with F (1,32) = 5.36, p = 0.027, ηp2 = 0.14], alongside a 
significant main effect of performance [F(1,32) = 10.17, p = 0.003, ηp2 

= 0.24]. For omission errors, the three-way interaction was not signif
icant [F(9, 270) = 0.18, p = 0.996, ηp2 = 0.01], and no significant effect 
was found for performance * ROI [F(9, 270) = 0.64, p = 0.762, ηp2 =

0.02]. Performance * arousal shows a significant effect [F(1, 30) = 9.85, 
p = 0.003, ηp2 = 0.25), and the main effect of performance showed a 
trend [F(1, 30) = 3.37, p = 0.08, ηp2 = 0.10]. For commission errors, the 
three-way interaction was significant [F(9, 234) = 1.40, p = 0.191, ηp2 

= 0.05], whereas no significant two-way interactions or main effects 
were observed for performance * ROI [F(9, 234) = 1.36, p = 0.210, ηp2 

= 0.05], performance * arousal [F(1, 26) = 0.35, p = 0.561, ηp2 = 0.01], 
or the main effect of performance [F(1, 26) = 0.31, p = 0.583, ηp2 =

0.01].
For each region of interest, we conducted four follow-up two-way 

ANOVAs (Performance × Arousal) corresponding to the four behav
ioural metrics (mean RT, omission errors, commission errors, RT CV). 
Family-wise error was controlled with a Bonferroni correction applied 
within ROI. For mean RT the performance x arousal interaction was 
significant in the frontal left (FL) region [F (1, 32) = 12.45, p = 0.004, 
ηp2 = 0.28], as was the interaction in the frontal right (FR) region [F(1, 
32) = 10.71, p = 0.012, ηp2 = 0.25]. Furthermore, significant effects 
were found for the performance x arousal interaction in the central left 
(CL) region [F (1, 32) = 9.60, p = 0.016, ηp2 = 0.23], the central right 
(CR) region [F (1, 32) = 8.15, p = 0.032, ηp2 = 0.20], and the temporal 
right (TR) region [F (1, 32) = 10.84, p = 0.008, ηp2 = 0.25]. Similarly, 
for omission errors, significant interactions were observed in both the FL 
[F(1, 30) = 12.71, p = 0.004, ηp2 = 0.30] and FR [F(1, 30) = 10.71, p =
0.012, ηp2 = 0.26], as well as in the central left (CL) region [F(1, 30) =
17.12, p = 0.001, ηp2 = 0.36], the central right (CR) region [F(1, 30) =
11.74, p = 0.008, ηp2 = 0.28], and the temporal right (TR) region [F(1, 
30) = 11.87, p = 0.008, ηp2 = 0.28]. No significant results were observed 

for CV RT or commission errors. See Fig. 3 for an overview of these 
region-specific effects.

Further analyses using post-hoc t-tests on these significant in
teractions indicated that in the FL region, high performers showed a 
significant increase in LZsum values when drowsy for mean reaction 
time [t(16) = -2.11, p = 0.050, Cohen's d = -0.53] and omission errors [t 
(15) = -2.41, p = 0.029, Cohen's d = -0.62], whereas low performers 
exhibited significant LZsum decreases [mean RT: t(16) = 2.83, p =
0.012, Cohen's d = 0.71; omission errors: t(15) = 2.68, p = 0.017, 
Cohen's d = 0.69]. A similar pattern was observed in the FR region, a 
trend was found for high performers experiencing an increase in LZsum 
values when drowsy for mean RT [t(16) = -1.89, p = 0.077, Cohen's d =
-0.47] and a significant increase in case of omission errors: t(15) = -2.45, 
p = 0.027, Cohen's d = -0.63] and low performers showing a significant 
decrease of LZsum values [mean RT [t(16) = 2.67, p = 0.017, Cohen's d 
= 0.69; omission errors [t(15) = 2.33, p = 0.035, Cohen's d = 0.60]. In 
the CL region, high performers also displayed a significant increase in 
LZsum values when drowsy compared to alert for mean RT [t(16) =
-3.49, p = 0.003, Cohen's d = -0.87] and omission errors [t(15) = -4.89, 
p < 0.001, Cohen's d = -1.26]. However, low performers did not show a 
significant decrease of LZsum values in this case [mean RT: t(16) = 1.48, 
p = 0.158, Cohen's d = 0.37; omission errors: t(15) = 2.05, p = 0.059, 
Cohen's d = 0.53]. In the CR region, high performers also displayed a 
significant increase in LZsum values when drowsy compared to alert for 
mean RT [t(16) = -3.21, p = 0.006, Cohen's d = -0.80] and omission 
errors [t(15) = -4.87, p < 0.001, Cohen's d = -1.26]. However, for low 
performers no significant increase of LZsum was observed during 
drowsiness [mean RT: t(16) = 1.38, p = 0.185, Cohen's d = 0.35; 
omission errors: t(15) = 1.58, p = 0.136, Cohen's d = 0.41]. Finally in 
the TR, high performers displayed a significant increase in LZsum values 
when drowsy compared to alert for mean RT [t(16) = -2.80, p = 0.013, 
Cohen's d = -0.70] and omission errors [t(15) = -3.24, p = 0.006, 
Cohen's d = -0.84]. However, for low performers no significant increase 
of LZsum was observed during drowsiness [mean RT: t(16) = -0.61, p =
0.553, Cohen's d = -0.15; omission errors: t(15) = -0.22, p = 0.828, 
Cohen's d = -0.06].

These results suggest a region-dependent difference in the modu
lating effect of arousal states on LZsum when comparing high per
formers to low performers, particularly concerning the performance in 
terms of mean RT and omission errors. The effect is most pronounced in 
key regions associated with attentional and executive processes (frontal 
regions) (Kievit et al., 2014) and areas involved in sensorimotor func
tions (central regions) (Kandel et al., 2013). This pattern suggests a 
similar compensatory mechanism as was also observed in the whole- 
brain LZsum results supported by a region-specific modulation of 
brain complexity. It must be mentioned that since EEG has limited 
spatial precision (Nunez & Srinivasan, 2006), effects found in specific 
regions may originate from neighbouring areas. However, the signifi
cant effect found in the frontal and central regions, and the absence of an 
effect in other regions (e.g. the occipital electrodes), suggests mean
ingful region-dependent activity.

3.2. Correlational analysis of task performance with brain measures and 
cognitive reserve proxies

We further explored the relationship between task performance and 
key variables (as detailed below) with a correlational analysis. We 
calculated correlations between the four metrics (mean RT, CV RT, 
commission errors, and omission errors) of task performance difference 
(drowsy/alert ratio) and: 1) LZsum difference (drowsy/alert ratio) in 
each of the 10 ROIs, 2) graph theoretical measures of white matter 
connectivity, 3) grey matter volume in cortical and hippocampal areas, 
and 4) proxies of cognitive reserve. For the correlational analyses, 
multiple comparisons were controlled using a Bonferroni correction 
applied across the four task performance metrics (mean RT, CV RT, 
commission errors, omission errors) within each family of variables (e. 
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g., each ROI, each graph theoretical measure, each grey matter volume measure).

Fig. 3. LZsum ROI-based EEG analysis (LZsum) in alert and drowsy states: comparing high to low performers. A–J show LZ complexity differences (alert vs. 
drowsy) at frontal (left/right), central (left/right), and temporal (right) regions of interest for either mean reaction time (A, C, E, G, I) or omission error rate (B, D, F, 
H, J), illustrating how neural signal complexity relates to task performance across regions, arousal and metrics. Only the significant results after Bonferroni correction 
are included in the panels. The x-axis represents the two conditions (alert vs. drowsy), and the y-axis represents the LZsum values. Participants are divided into two 
groups based on their performance on the auditory version of the Sustained Attention to Response Task (SART). High performers are represented in red and low 
performers in blue. (p ≤ 0.05 *), (p ≤ 0.01**), (p ≤ 0.001***). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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Fig. 3. (continued).

Fig. 4. Scatterplots of associations between LZsum and performance difference (drowsy vs alert) on various performance metrics. All panels display 
scatterplots which illustrate the significant relationship between LZsum difference (drowsy/alert) of specific regions of interest (ROI) (y-axis) and various cognitive 
performance difference (drowsy/alert) metrics (x-axis). All of the significant results displayed in the scatterplots survived Bonferroni correction. A. Association 
between frontal left LZsum and mean RT difference. B. Association between frontal right LZsum and mean RT difference. C. Association between central left LZsum 
and mean RT difference. D Association between central left LZsum and commission errors difference. E. Association between central right LZsum and commission 
errors difference. F. Association between frontal left LZsum and omission errors difference. G. Association between frontal right LZsum and omission errors dif
ference. H. Association between central left LZsum and omission errors difference. (p ≤ 0.05 *), (p ≤ 0.01**), (p ≤ 0.001***).
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3.2.1. Correlational analysis of LZsum and task performance
Building on our earlier findings that showed a strong effect for per

formance on LZsum differentiating between high and low performers, 
we now perform the corresponding individual differences analysis. 
Significant negative correlations, which remained statistically signifi
cant after Bonferroni correction, were found between performance dif
ference and LZsum difference in the frontal and central areas for mean 
RT difference (drowsy/alert) and both omission and commission error 
difference (drowsy − alert). See Fig. 4 for an overview. These results 
support our previous ANOVA findings by demonstrating a consistent 
pattern where LZsum negatively correlates with task performance dif
ference (alert vs. drowsy). Here, a higher LZsum ratio (drowsy/alert) is 
associated with a better ability to maintain task performance under 
drowsiness, as indicated by lower scores in performance difference, and 
vice versa. This negative correlation is most robust in frontal and central 
brain areas, indicating that increased LZsum in these areas during 
drowsiness is linked to more resilient cognitive functioning under neural 
strain. For a detailed overview of all significant correlations, including 
those that did not survive correction, between performance difference 
and LZsum difference in the ROIs, please refer to Table S3 in the sup
plementary materials.

3.2.2. Correlational analysis of structural brain measures, cognitive reserve 
proxies, and task performance

We computed network measures of white matter connectivity for 
both the overall brain network and seven distinct subnetworks as 
defined by Yeo et al. (2011), using the Brain Connectivity Toolbox 
(Rubinov & Sporns, 2010), to investigate the following network char
acteristics: characteristic path length, average degree, global efficiency, 
mean clustering coefficient, mean participation coefficient, small- 
worldness, and core-periphery structure. Additionally, our analysis 
included structural volumetric MRI data of cortical and medial temporal 
lobe (MTL) regions, and proxies of cognitive reserve, namely two 
distinct IQ measures: 1. Cattell for fluid intelligence (Cattell, 1973) and 
2. NART for premorbid intelligence (Nelson & Willison, 1991) along 
with the discrepancy between them (NART – Cattell), the scores on the 
Montreal Cognitive Assessment (MoCA) (Nasreddine, 2005), and 
educational level.

We calculated correlations between the four metrics of behavioural 
performance difference between drowsy and alert (mean RT, CV RT, 
commission errors, and omission errors) and: 1) network measures of 
white matter connectivity, 2) grey matter volume in cortical areas and 
the MTL, and 3) proxies of cognitive reserve. No significant correlations 
were found between our behavioural measure of cognitive reserve and 
any of the traditional proxies (age, education, fluid intelligence, pre
morbid IQ, IQ difference, or MoCA score).

Of note, two correlations between performance difference (drowsy 
vs alert) and network connectivity measures survived correction for 
multiple comparisons: (1) a negative association between omission er
rors difference and the mean participation coefficient of the frontopar
ietal control network, and (2) a positive association between mean 
reaction time difference and core-periphery structure in the ventral 
attention network. These findings suggest that specific aspects of brain 
network organisation, particularly within networks related to cognitive 
control and attentional processes, are linked to the capacity to maintain 
performance under neural strain. Other noteworthy significant corre
lations also concerned cognitive control and attentional networks but 
did not survive correction. Full details and scatterplots are reported in 
the Supplementary Materials (Section S1).

For grey matter volume, only the correlation between the left 
supramarginal gyrus and commission error difference survived correc
tion. However, several other regions (e.g., pars triangularis, entorhinal 
cortex, inferior parietal cortex) repeatedly showed nominally significant 
associations across different behavioural metrics. This recurrence may 
suggest that these areas are particularly relevant to the ability to 
maintain performance under neural strain, warranting further 

investigation in larger samples (see Supplementary Materials Section S2 
for full details).

4. Discussion

The primary goal of the current work was to gain more insight into 
the underlying neural mechanisms of cognitive reserve in an elderly 
population. We provided an operational definition and simple method 
aimed at measuring cognitive reserve more directly and related this to a 
variety of potential structural and functional neural markers. Here, 
cognitive reserve was operationalised as the performance discrepancy (i. 
e. reaction time, errors) between drowsy and alert states on a sustained 
attention task. We hypothesised that the informational complexity of the 
EEG signal, as quantified by Lempel-Ziv complexity for single channels 
(LZsum), would decrease in low performers when transitioning from an 
alert to a drowsy state, but would be maintained or increased in high 
performers, reflecting a compensatory mechanism. Our approach treats 
performance under drowsiness as a behavioural manifestation of 
cognitive reserve in action, while acknowledging that this remains a 
putative operationalisation rather than a definitive measure.

The main findings from our study show that in high performing in
dividuals LZsum increases when transitioning from an alert to a drowsy 
state, which contrasted with the pattern observed in low performers, 
who showed no significant change in LZsum under similar conditions. 
These LZsum effects were primarily observed in the frontal and central 
regions demonstrating that there are region-dependent differences in 
the modulating effect of arousal on LZsum, with the effect most pro
nounced in regions related to attention, executive (frontal) (Kievit et al., 
2014), and sensorimotor (central) functioning (Kandel et al., 2013). This 
finding is consistent with Boncompte et al. (2021), who reported an 
increase in Lempel-Ziv complexity during propofol-induced mild seda
tion in participants maintaining behavioural performance, which was 
observed in the frontal electrodes. Taken together, increases in infor
mational complexity under neural strain in the frontal areas may predict 
higher levels of cognitive reserve, supported by the potential involve
ment of the fronto-parietal control network in cognitive reserve (Kievit 
et al., 2014; Stern et al., 2019). However, these findings need to be 
interpreted with caution since the limited spatial precision of EEG means 
that effects found in specific regions may originate from neighbouring 
areas (Nunez & Srinivasan, 2006). However, the significant effect found 
in the frontal and central regions, and the absence of an effect in other 
regions (e.g. the occipital electrodes), suggests meaningful region- 
dependent activity. Future research using neuroimaging methods with 
higher spatial precision such as fMRI could complement our results and 
would aid in a more detailed localisation of the effect.

Additionally, in concert with the above results, the LZsum correla
tion results showed that a higher LZsum ratio (drowsy/alert) is associ
ated with smaller performance differences (drowsy/alert for reaction 
time, drowsy – alert for errors), indicating a better ability to maintain 
task performance under drowsiness, with high performers showing 
minimal decreases or slight improvements, and low performers experi
encing a more substantial decline in performance. Furthermore, our 
results showed LZsum values to be higher in high performers overall, 
independent of the level of arousal, and this effect could be more clearly 
observed during drowsiness. The consistent pattern across different 
states of arousal and brain regions that differentiates high performers 
from low performers highlights the potential role of individual differ
ences in informational complexity as a neural marker of cognitive 
reserve.

We also measured correlations between our measure of cognitive 
reserve (i.e. performance difference alert vs. drowsy) and well-known 
proxies of cognitive reserve, such as IQ and educational level, but no 
significant correlations were found. Future studies with more diverse 
cohorts, specially including individuals with lower education or cogni
tive scores, may be better suited to detect such relationships. Further
more, it could be that the statistical power of the study was too low to 
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uncover the expected association between the proxies of cognitive 
reserve and ability to maintain task performance under neural strain. 
LZsum may be a more sensitive measure so that even with low statistical 
power a strong effect could still be found, but the relatively small sample 
size may have limited the detection of more subtle effects. Future 
research with larger samples could offer richer distributions and further 
validate our findings. Additionally, other well-known proxies were not 
included in the study such as current lifestyle and activity levels, social 
life and leisure activities, and occupational complexity (Satz, 1993; 
Scarmeas et al., 2001; Valenzuela et al., 2008). Proxies such as pre
morbid IQ and educational level may not fully capture the current 
contribution to cognitive reserve. Factors such as current leisure activ
ities, social life and activity level may be of more influence in the elderly, 
as these relate to current ongoing physical and mental engagement and 
could be included in future studies.

At this stage, we cannot make definitive conclusions about whether 
we have measured cognitive reserve. Our main result that shows infor
mational complexity differences between high and low performers could 
potentially be attributed to task-specific effects, such as the ability to 
compensate for neural strain on a sustained attention task. However, a 
similar effect of informational complexity differences between high and 
low performers was found in the Boncompte et al. (2021) study, where 
they used an auditory discrimination task. Auditory sustained attention 
tasks and auditory discrimination tasks differ in specific demands (sus
tained attention versus perceptual discrimination), suggesting the effect 
may be reflecting a broader cognitive effect, instead of an effect that is 
purely task specific. To further investigate whether our finding relates to 
a broader cognitive compensatory mechanism, the experiment could be 
replicated using a variety of different tasks related to different percep
tual modalities, different types of cognitive functioning (e.g. memory) 
and tasks that are more cognitively demanding (e.g. n-back task), and 
using different types of neural strain (e.g. sleep deprivation, mild 
sedation) to assess the ability to actively compensate for neural chal
lenges and maintain cognitive performance.

Another important potential limitation to consider is that perhaps 
our group of participants were too homogeneous in terms of proxies of 
cognitive reserve. For instance, on average our participants had spent 
18 years in education. In previous research that assessed the relationship 
between educational attainment and cognitive reserve, low educational 
attainment is defined as spending 8 years or less in education 
(Valenzuela & Sachdev, 2006). Since our group consisted primarily of 
highly educated participants it may be that a threshold was reached 
beyond which additional years of education yield diminishing returns in 
terms of further increasing cognitive reserve. A similar pattern was 
observed for IQ: both estimated premorbid IQ (NART) and current fluid 
intelligence (Cattell) scores were relatively high and showed limited 
variability across participants. This homogeneity further limits the 
ability to detect associations between these proxies and cognitive 
reserve-related measures.

A study with the same drowsiness paradigm in patients with mild 
cognitive impairment (MCI) and Alzheimer’s disease (AD) may lead to 
additional insights of whether we are truly measuring cognitive reserve. 
High cognitive reserve individuals with AD or MCI are characterised by 
relatively well-preserved cognitive functioning given their advanced 
brain pathology (Steffener & Stern, 2012). Therefore, if we compare 
healthy elderly participants with patients with MCI and AD, using 
objective measures of brain pathology (e.g. structural MRI) alongside 
cognitive functioning assessments, we can more accurately differentiate 
between high and low cognitive reserve patients. This clearer differen
tiation could further our understanding of the experimental effects and 
potentially validate the findings of the current work.

We also explored correlations between performance difference (alert 
vs. drowsy) and cortical and hippocampal grey matter volume various 
measures. For instance, there was a positive association between volume 
in the left entorhinal cortex having an increase in reaction time while 
drowsy and making more omission and commission errors. Of chief 

importance are frontal, parietal and medial temporal lobe (MTL) related 
brain regions because of their involvement in Alzheimer’s Disease (AD). 
These regions are crucial as they are implicated in core functions such as 
memory, spatial orientation, and executive function, which deteriorate 
in AD (Jack et al., 2010). It is worth noting that associations between 
volumetric variations in the medial temporal lobe regions and the ability 
to maintain performance under neural strain are of potential clinical 
significance as these brain regions are among the earliest to atrophy in 
AD (Jack et al., 2010). The observation that lower volume in the ento
rhinal cortex correlates with increased ability to maintain performance 
while drowsy potentially underscores the concept of cognitive reserve. 
This counterintuitive finding suggests that individuals with higher 
cognitive reserve may effectively utilise alternate neural pathways to 
maintain cognitive performance despite structural brain changes, indi
cating a complex interaction between the beginning stages of neural 
degeneration and compensatory mechanisms. Furthermore, the left 
inferior parietal cortex and pars triangularis also repeatedly showed 
nominal associations across multiple performance metrics, although not 
all survived correction. These recurring patterns suggest that further 
investigation in larger, more diverse samples is warranted.

The left supramarginal gyrus, implicated in working memory, lan
guage and phonological processing (Oberhuber et al., 2016) signifi
cantly correlated with performance. Interestingly, the direction of 
association in the supramarginal gyrus suggests that higher volume was 
linked to more commission errors. This is in line with previous research 
which has shown that correlations between structural preservation and 
cognitive reserve proxies have shown mixed results within samples of 
normal healthy elderly individuals (Querbes et al., 2009; Bartrés-Faz & 
Arenaza-Urquijo, 2011). This contradiction may reflect the dual role of 
cognitive reserve: enrichment throughout life supports structural 
maintenance, but individuals with higher reserve can also tolerate more 
neurodegeneration before showing cognitive decline (Valenzuela et al., 
2008; Stern, 2012). As a result, mixed findings are common in healthy 
elderly samples, which may include both well-preserved individuals and 
those in early stages of pathology.

Our network analysis of white matter connectivity revealed several 
nominally significant associations between graph-theoretical network 
metrics and performance under drowsiness. Specifically, correlations 
were observed between performance differences and network charac
teristics in the ventral attention, default mode, and frontoparietal con
trol networks. Notably, there was an association between omission 
errors and the mean participation coefficient in the frontoparietal con
trol network, as well as the association between mean RT difference and 
core-periphery structure in the ventral attention network. These findings 
suggest that connectivity patterns within cognitive control and atten
tional networks may play a role in individual differences in compensa
tory capacity under neural strain. The remaining significant associations 
did not survive correction and should be interpreted cautiously. A 
relatively small sample size combined with many comparisons may have 
reduced statistical power and potentially caused some genuine effects to 
be missed. Therefore, any significant correlations before correction 
should be seen as preliminary and warrant further investigation into the 
role of grey matter volume, as well as network characteristics, in 
cognitive reserve. The combination of the inconclusiveness of the 
structural brain metrics and proxies of cognitive reserve in combination 
with the strong results we found for LZsum suggests that complexity 
measures such as LZsum derived from electrophysiological data during a 
task are statistically robust and capture unique information that various 
other metrics do not. Thus, we argue that LZsum is a strong neural 
candidate to index cognitive reserve.

Interestingly, measures of informational complexity such as Lempel- 
Ziv are used extensively in consciousness research. Informational 
complexity measures have been shown to accurately assess anaesthetic 
depth (Schartner et al., 2015; Shin et al., 2020), differentiate between 
levels of consciousness in brain-injured patients (Chennu et al., 2014; 
King et al., 2013), and are useful to study transitions in sleep stages 
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(Casali et al., 2013), and show increased values in studies with psy
chedelics (Schartner et al., 2017). These studies all show a similar 
pattern: lower levels of consciousness correspond to lower informational 
complexity, and vice versa. Critically, our findings present a counter
example to the prevailing view that informational complexity purely 
reflects conscious level. Given that in the high-performing group, 
informational complexity dissociated from conscious state, our study 
challenges how complexity measures are interpreted in consciousness 
research. Our results suggest that the increase in complexity might be 
related to the brain’s capacity to adapt and compensate under varying 
cognitive demands, similar to other studies such as the work from 
Boncompte et al. (2021) that explore subtler fluctuations in conscious
ness (e.g. moderate sedation, drowsiness), where informational 
complexity shows a more non-linear pattern. In this way, our work in
vites a re-evaluation of how informational complexity is interpreted in 
consciousness research.

In conclusion, the examination of differences in performance from 
alert to drowsy states as an operational measure of cognitive reserve 
offers a novel approach compared to traditional proxies such as educa
tional level and IQ. This method directly captures the active process of 
compensating for neural challenges, which is more representative of the 
real-world scenarios faced by individuals with cognitive decline, and in 
this way potential underlying neural markers of cognitive reserve can be 
investigated. It remains to be determined whether compensatory 
mechanisms observed under drowsiness fully generalise to other types of 
neural strain, such as strain from age- and disease related neural 
changes. However, drowsiness represents a well-defined and experi
mentally controllable form of neural strain and given its relevance as an 
early symptom in AD, serves as a meaningful starting point to assess 
individual differences in compensatory capacity. While further work is 
needed to determine how broadly these findings extend, compensatory 
capacity revealed under one form of strain may nevertheless provide a 
useful marker of cognitive reserve. Thus, the present findings should be 
viewed as an important first step toward understanding these mecha
nisms. Our results show potential for LZsum as a neural marker in 
cognitive reserve assessment. Future validation of these findings could 
lead to its use in clinical trials, particularly in evaluating cognitive 
reserve as a factor in treatment response. For instance, assessing 
cognitive reserve using LZsum in clinical trials for Alzheimer’s disease 
medications could help control for cognitive reserve as a confounding 
factor, leading to more precise and personalised treatment strategies. 
Such applications could significantly advance the field of neurodegen
erative disease treatment, offering new tools for clinicians in their efforts 
to mitigate the impact of cognitive decline.
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